ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtriexmid GIF version

Theorem ordtriexmid 4247
Description: Ordinal trichotomy implies the law of the excluded middle (that is, decidability of an arbitrary proposition).

This theorem is stated in "Constructive ordinals", [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic".

(Contributed by Mario Carneiro and Jim Kingdon, 14-Nov-2018.)

Hypothesis
Ref Expression
ordtriexmid.1 𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥)
Assertion
Ref Expression
ordtriexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑥
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem ordtriexmid
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 noel 3228 . . . 4 ¬ {𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅
2 ordtriexmidlem 4245 . . . . . 6 {𝑧 ∈ {∅} ∣ 𝜑} ∈ On
3 eleq1 2100 . . . . . . . 8 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑥 ∈ ∅ ↔ {𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅))
4 eqeq1 2046 . . . . . . . 8 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑥 = ∅ ↔ {𝑧 ∈ {∅} ∣ 𝜑} = ∅))
5 eleq2 2101 . . . . . . . 8 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (∅ ∈ 𝑥 ↔ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}))
63, 4, 53orbi123d 1206 . . . . . . 7 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → ((𝑥 ∈ ∅ ∨ 𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ {𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})))
7 0elon 4129 . . . . . . . 8 ∅ ∈ On
8 0ex 3884 . . . . . . . . 9 ∅ ∈ V
9 eleq1 2100 . . . . . . . . . . 11 (𝑦 = ∅ → (𝑦 ∈ On ↔ ∅ ∈ On))
109anbi2d 437 . . . . . . . . . 10 (𝑦 = ∅ → ((𝑥 ∈ On ∧ 𝑦 ∈ On) ↔ (𝑥 ∈ On ∧ ∅ ∈ On)))
11 eleq2 2101 . . . . . . . . . . 11 (𝑦 = ∅ → (𝑥𝑦𝑥 ∈ ∅))
12 eqeq2 2049 . . . . . . . . . . 11 (𝑦 = ∅ → (𝑥 = 𝑦𝑥 = ∅))
13 eleq1 2100 . . . . . . . . . . 11 (𝑦 = ∅ → (𝑦𝑥 ↔ ∅ ∈ 𝑥))
1411, 12, 133orbi123d 1206 . . . . . . . . . 10 (𝑦 = ∅ → ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑥 ∈ ∅ ∨ 𝑥 = ∅ ∨ ∅ ∈ 𝑥)))
1510, 14imbi12d 223 . . . . . . . . 9 (𝑦 = ∅ → (((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥)) ↔ ((𝑥 ∈ On ∧ ∅ ∈ On) → (𝑥 ∈ ∅ ∨ 𝑥 = ∅ ∨ ∅ ∈ 𝑥))))
16 ordtriexmid.1 . . . . . . . . . 10 𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥)
1716rspec2 2408 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
188, 15, 17vtocl 2608 . . . . . . . 8 ((𝑥 ∈ On ∧ ∅ ∈ On) → (𝑥 ∈ ∅ ∨ 𝑥 = ∅ ∨ ∅ ∈ 𝑥))
197, 18mpan2 401 . . . . . . 7 (𝑥 ∈ On → (𝑥 ∈ ∅ ∨ 𝑥 = ∅ ∨ ∅ ∈ 𝑥))
206, 19vtoclga 2619 . . . . . 6 ({𝑧 ∈ {∅} ∣ 𝜑} ∈ On → ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ {𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}))
212, 20ax-mp 7 . . . . 5 ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ {𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})
22 3orass 888 . . . . 5 (({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ {𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}) ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})))
2321, 22mpbi 133 . . . 4 ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}))
241, 23mtpor 1316 . . 3 ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})
25 ordtriexmidlem2 4246 . . . 4 ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑)
268snid 3402 . . . . . 6 ∅ ∈ {∅}
27 biidd 161 . . . . . . 7 (𝑧 = ∅ → (𝜑𝜑))
2827elrab3 2699 . . . . . 6 (∅ ∈ {∅} → (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑))
2926, 28ax-mp 7 . . . . 5 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑)
3029biimpi 113 . . . 4 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} → 𝜑)
3125, 30orim12i 676 . . 3 (({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}) → (¬ 𝜑𝜑))
3224, 31ax-mp 7 . 2 𝜑𝜑)
33 orcom 647 . 2 ((𝜑 ∨ ¬ 𝜑) ↔ (¬ 𝜑𝜑))
3432, 33mpbir 134 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 97  wb 98  wo 629  w3o 884   = wceq 1243  wcel 1393  wral 2306  {crab 2310  c0 3224  {csn 3375  Oncon0 4100
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-nul 3883  ax-pow 3927
This theorem depends on definitions:  df-bi 110  df-3or 886  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-uni 3581  df-tr 3855  df-iord 4103  df-on 4105  df-suc 4108
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator