ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expivallem Unicode version

Theorem expivallem 9256
Description: Lemma for expival 9257. If we take a complex number apart from zero and raise it to a positive integer power, the result is apart from zero. (Contributed by Jim Kingdon, 7-Jun-2020.)
Assertion
Ref Expression
expivallem  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  NN )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  N ) #  0 )

Proof of Theorem expivallem
Dummy variables  k  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5178 . . . . . 6  |-  ( n  =  1  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  n )  =  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  1 )
)
21breq1d 3774 . . . . 5  |-  ( n  =  1  ->  (
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  n
) #  0  <->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  1 ) #  0 ) )
32imbi2d 219 . . . 4  |-  ( n  =  1  ->  (
( ( A  e.  CC  /\  A #  0 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  n ) #  0 )  <->  ( ( A  e.  CC  /\  A #  0 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  1 ) #  0 ) ) )
4 fveq2 5178 . . . . . 6  |-  ( n  =  k  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  n )  =  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  k )
)
54breq1d 3774 . . . . 5  |-  ( n  =  k  ->  (
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  n
) #  0  <->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  k ) #  0 ) )
65imbi2d 219 . . . 4  |-  ( n  =  k  ->  (
( ( A  e.  CC  /\  A #  0 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  n ) #  0 )  <->  ( ( A  e.  CC  /\  A #  0 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  k ) #  0 ) ) )
7 fveq2 5178 . . . . . 6  |-  ( n  =  ( k  +  1 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  n )  =  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  ( k  +  1 ) ) )
87breq1d 3774 . . . . 5  |-  ( n  =  ( k  +  1 )  ->  (
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  n
) #  0  <->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  ( k  +  1 ) ) #  0 ) )
98imbi2d 219 . . . 4  |-  ( n  =  ( k  +  1 )  ->  (
( ( A  e.  CC  /\  A #  0 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  n ) #  0 )  <->  ( ( A  e.  CC  /\  A #  0 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  ( k  +  1 ) ) #  0 ) ) )
10 fveq2 5178 . . . . . 6  |-  ( n  =  N  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  n )  =  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N )
)
1110breq1d 3774 . . . . 5  |-  ( n  =  N  ->  (
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  n
) #  0  <->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  N ) #  0 ) )
1211imbi2d 219 . . . 4  |-  ( n  =  N  ->  (
( ( A  e.  CC  /\  A #  0 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  n ) #  0 )  <->  ( ( A  e.  CC  /\  A #  0 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  N ) #  0 ) ) )
13 simpr 103 . . . . 5  |-  ( ( A  e.  CC  /\  A #  0 )  ->  A #  0 )
14 1zzd 8272 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A #  0 )  ->  1  e.  ZZ )
15 cnex 7005 . . . . . . . . 9  |-  CC  e.  _V
1615a1i 9 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A #  0 )  ->  CC  e.  _V )
17 elnnuz 8509 . . . . . . . . . . 11  |-  ( x  e.  NN  <->  x  e.  ( ZZ>= `  1 )
)
18 fvconst2g 5375 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  x  e.  NN )  ->  ( ( NN  X.  { A } ) `  x )  =  A )
1917, 18sylan2br 272 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  x  e.  ( ZZ>= ` 
1 ) )  -> 
( ( NN  X.  { A } ) `  x )  =  A )
2019adantlr 446 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  x  e.  ( ZZ>= ` 
1 ) )  -> 
( ( NN  X.  { A } ) `  x )  =  A )
21 simpll 481 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  x  e.  ( ZZ>= ` 
1 ) )  ->  A  e.  CC )
2220, 21eqeltrd 2114 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  x  e.  ( ZZ>= ` 
1 ) )  -> 
( ( NN  X.  { A } ) `  x )  e.  CC )
23 mulcl 7008 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
2423adantl 262 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( x  x.  y )  e.  CC )
2514, 16, 22, 24iseq1 9222 . . . . . . 7  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  1 )  =  ( ( NN 
X.  { A }
) `  1 )
)
26 1nn 7925 . . . . . . . . 9  |-  1  e.  NN
27 fvconst2g 5375 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  1  e.  NN )  ->  ( ( NN  X.  { A } ) ` 
1 )  =  A )
2826, 27mpan2 401 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( NN  X.  { A } ) `  1
)  =  A )
2928adantr 261 . . . . . . 7  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (
( NN  X.  { A } ) `  1
)  =  A )
3025, 29eqtrd 2072 . . . . . 6  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  1 )  =  A )
3130breq1d 3774 . . . . 5  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  1
) #  0  <->  A #  0
) )
3213, 31mpbird 156 . . . 4  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  1 ) #  0 )
33 simpl 102 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  ->  k  e.  NN )
34 elnnuz 8509 . . . . . . . . . . 11  |-  ( k  e.  NN  <->  k  e.  ( ZZ>= `  1 )
)
3533, 34sylib 127 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  ->  k  e.  (
ZZ>= `  1 ) )
3635adantr 261 . . . . . . . . 9  |-  ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  /\  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  k ) #  0 )  ->  k  e.  ( ZZ>= `  1 )
)
3715a1i 9 . . . . . . . . 9  |-  ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  /\  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  k ) #  0 )  ->  CC  e.  _V )
3822adantll 445 . . . . . . . . . 10  |-  ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  /\  x  e.  (
ZZ>= `  1 ) )  ->  ( ( NN 
X.  { A }
) `  x )  e.  CC )
3938adantlr 446 . . . . . . . . 9  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  /\  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  k
) #  0 )  /\  x  e.  ( ZZ>= ` 
1 ) )  -> 
( ( NN  X.  { A } ) `  x )  e.  CC )
4023adantl 262 . . . . . . . . 9  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  /\  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  k
) #  0 )  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( x  x.  y )  e.  CC )
4136, 37, 39, 40iseqcl 9223 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  /\  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  k ) #  0 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  k )  e.  CC )
42 simplrl 487 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  /\  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  k ) #  0 )  ->  A  e.  CC )
43 simpr 103 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  /\  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  k ) #  0 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  k ) #  0 )
44 simplrr 488 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  /\  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  k ) #  0 )  ->  A #  0 )
4541, 42, 43, 44mulap0d 7639 . . . . . . 7  |-  ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  /\  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  k ) #  0 )  ->  (
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  k
)  x.  A ) #  0 )
4615a1i 9 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  ->  CC  e.  _V )
4723adantl 262 . . . . . . . . . . 11  |-  ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  x.  y
)  e.  CC )
4835, 46, 38, 47iseqp1 9225 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  ->  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  ( k  +  1 ) )  =  ( (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  k )  x.  ( ( NN  X.  { A } ) `  ( k  +  1 ) ) ) )
49 simprl 483 . . . . . . . . . . . 12  |-  ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  ->  A  e.  CC )
5033peano2nnd 7929 . . . . . . . . . . . 12  |-  ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  ->  ( k  +  1 )  e.  NN )
51 fvconst2g 5375 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( k  +  1 )  e.  NN )  ->  ( ( NN 
X.  { A }
) `  ( k  +  1 ) )  =  A )
5249, 50, 51syl2anc 391 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  ->  ( ( NN 
X.  { A }
) `  ( k  +  1 ) )  =  A )
5352oveq2d 5528 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  ->  ( (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  k )  x.  ( ( NN  X.  { A } ) `  ( k  +  1 ) ) )  =  ( (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  k )  x.  A ) )
5448, 53eqtrd 2072 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  ->  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  ( k  +  1 ) )  =  ( (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  k )  x.  A ) )
5554breq1d 3774 . . . . . . . 8  |-  ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  ->  ( (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  ( k  +  1 ) ) #  0  <->  ( (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  k )  x.  A ) #  0 ) )
5655adantr 261 . . . . . . 7  |-  ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  /\  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  k ) #  0 )  ->  (
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  (
k  +  1 ) ) #  0  <->  ( (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  k )  x.  A ) #  0 ) )
5745, 56mpbird 156 . . . . . 6  |-  ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  /\  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  k ) #  0 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  ( k  +  1 ) ) #  0 )
5857exp31 346 . . . . 5  |-  ( k  e.  NN  ->  (
( A  e.  CC  /\  A #  0 )  -> 
( (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  k ) #  0  ->  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  ( k  +  1 ) ) #  0 ) ) )
5958a2d 23 . . . 4  |-  ( k  e.  NN  ->  (
( ( A  e.  CC  /\  A #  0 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  k ) #  0 )  ->  (
( A  e.  CC  /\  A #  0 )  -> 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  (
k  +  1 ) ) #  0 ) ) )
603, 6, 9, 12, 32, 59nnind 7930 . . 3  |-  ( N  e.  NN  ->  (
( A  e.  CC  /\  A #  0 )  -> 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N
) #  0 ) )
6160impcom 116 . 2  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  N  e.  NN )  ->  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ,  CC ) `
 N ) #  0 )
62613impa 1099 1  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  NN )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  N ) #  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    /\ w3a 885    = wceq 1243    e. wcel 1393   _Vcvv 2557   {csn 3375   class class class wbr 3764    X. cxp 4343   ` cfv 4902  (class class class)co 5512   CCcc 6887   0cc0 6889   1c1 6890    + caddc 6892    x. cmul 6894   # cap 7572   NNcn 7914   ZZ>=cuz 8473    seqcseq 9211
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-inn 7915  df-n0 8182  df-z 8246  df-uz 8474  df-iseq 9212
This theorem is referenced by:  expival  9257
  Copyright terms: Public domain W3C validator