ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divfnzn Unicode version

Theorem divfnzn 8556
Description: Division restricted to  ZZ  X.  NN is a function. Given excluded middle, it would be easy to prove this for  CC 
X.  ( CC  \  { 0 } ). The key difference is that an element of  NN is apart from zero, whereas being an element of 
CC  \  { 0 } implies being not equal to zero. (Contributed by Jim Kingdon, 19-Mar-2020.)
Assertion
Ref Expression
divfnzn  |-  (  /  |`  ( ZZ  X.  NN ) )  Fn  ( ZZ  X.  NN )

Proof of Theorem divfnzn
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zcn 8250 . . . . . . 7  |-  ( x  e.  ZZ  ->  x  e.  CC )
21ad2antrr 457 . . . . . 6  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  z  e.  CC )  ->  x  e.  CC )
3 nncn 7922 . . . . . . 7  |-  ( y  e.  NN  ->  y  e.  CC )
43ad2antlr 458 . . . . . 6  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  z  e.  CC )  ->  y  e.  CC )
5 simpr 103 . . . . . 6  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  z  e.  CC )  ->  z  e.  CC )
6 nnap0 7943 . . . . . . 7  |-  ( y  e.  NN  ->  y #  0 )
76ad2antlr 458 . . . . . 6  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  z  e.  CC )  ->  y #  0 )
82, 4, 5, 7divmulapd 7787 . . . . 5  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  z  e.  CC )  ->  ( ( x  /  y )  =  z  <->  ( y  x.  z )  =  x ) )
98riotabidva 5484 . . . 4  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( iota_ z  e.  CC  ( x  /  y
)  =  z )  =  ( iota_ z  e.  CC  ( y  x.  z )  =  x ) )
10 eqcom 2042 . . . . . . 7  |-  ( z  =  ( x  / 
y )  <->  ( x  /  y )  =  z )
1110a1i 9 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( z  =  ( x  /  y )  <-> 
( x  /  y
)  =  z ) )
1211riotabidv 5470 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( iota_ z  e.  CC  z  =  ( x  /  y ) )  =  ( iota_ z  e.  CC  ( x  / 
y )  =  z ) )
13 simpl 102 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  NN )  ->  x  e.  CC )
143adantl 262 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  NN )  ->  y  e.  CC )
156adantl 262 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  NN )  ->  y #  0 )
1613, 14, 15divclapd 7765 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  NN )  ->  ( x  /  y
)  e.  CC )
17 reueq 2738 . . . . . . . 8  |-  ( ( x  /  y )  e.  CC  <->  E! z  e.  CC  z  =  ( x  /  y ) )
1816, 17sylib 127 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  NN )  ->  E! z  e.  CC  z  =  ( x  /  y ) )
19 riotacl 5482 . . . . . . 7  |-  ( E! z  e.  CC  z  =  ( x  / 
y )  ->  ( iota_ z  e.  CC  z  =  ( x  / 
y ) )  e.  CC )
2018, 19syl 14 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  NN )  ->  ( iota_ z  e.  CC  z  =  ( x  /  y ) )  e.  CC )
211, 20sylan 267 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( iota_ z  e.  CC  z  =  ( x  /  y ) )  e.  CC )
2212, 21eqeltrrd 2115 . . . 4  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( iota_ z  e.  CC  ( x  /  y
)  =  z )  e.  CC )
239, 22eqeltrrd 2115 . . 3  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( iota_ z  e.  CC  ( y  x.  z
)  =  x )  e.  CC )
2423rgen2 2405 . 2  |-  A. x  e.  ZZ  A. y  e.  NN  ( iota_ z  e.  CC  ( y  x.  z )  =  x )  e.  CC
25 df-div 7652 . . . . 5  |-  /  =  ( x  e.  CC ,  y  e.  ( CC  \  { 0 } )  |->  ( iota_ z  e.  CC  ( y  x.  z )  =  x ) )
2625reseq1i 4608 . . . 4  |-  (  /  |`  ( ZZ  X.  NN ) )  =  ( ( x  e.  CC ,  y  e.  ( CC  \  { 0 } )  |->  ( iota_ z  e.  CC  ( y  x.  z )  =  x ) )  |`  ( ZZ  X.  NN ) )
27 zsscn 8253 . . . . 5  |-  ZZ  C_  CC
28 nncn 7922 . . . . . . 7  |-  ( x  e.  NN  ->  x  e.  CC )
29 nnne0 7942 . . . . . . 7  |-  ( x  e.  NN  ->  x  =/=  0 )
30 eldifsn 3495 . . . . . . 7  |-  ( x  e.  ( CC  \  { 0 } )  <-> 
( x  e.  CC  /\  x  =/=  0 ) )
3128, 29, 30sylanbrc 394 . . . . . 6  |-  ( x  e.  NN  ->  x  e.  ( CC  \  {
0 } ) )
3231ssriv 2949 . . . . 5  |-  NN  C_  ( CC  \  { 0 } )
33 resmpt2 5599 . . . . 5  |-  ( ( ZZ  C_  CC  /\  NN  C_  ( CC  \  {
0 } ) )  ->  ( ( x  e.  CC ,  y  e.  ( CC  \  { 0 } ) 
|->  ( iota_ z  e.  CC  ( y  x.  z
)  =  x ) )  |`  ( ZZ  X.  NN ) )  =  ( x  e.  ZZ ,  y  e.  NN  |->  ( iota_ z  e.  CC  ( y  x.  z
)  =  x ) ) )
3427, 32, 33mp2an 402 . . . 4  |-  ( ( x  e.  CC , 
y  e.  ( CC 
\  { 0 } )  |->  ( iota_ z  e.  CC  ( y  x.  z )  =  x ) )  |`  ( ZZ  X.  NN ) )  =  ( x  e.  ZZ ,  y  e.  NN  |->  ( iota_ z  e.  CC  ( y  x.  z )  =  x ) )
3526, 34eqtri 2060 . . 3  |-  (  /  |`  ( ZZ  X.  NN ) )  =  ( x  e.  ZZ , 
y  e.  NN  |->  (
iota_ z  e.  CC  ( y  x.  z
)  =  x ) )
3635fnmpt2 5828 . 2  |-  ( A. x  e.  ZZ  A. y  e.  NN  ( iota_ z  e.  CC  ( y  x.  z )  =  x )  e.  CC  ->  (  /  |`  ( ZZ  X.  NN ) )  Fn  ( ZZ  X.  NN ) )
3724, 36ax-mp 7 1  |-  (  /  |`  ( ZZ  X.  NN ) )  Fn  ( ZZ  X.  NN )
Colors of variables: wff set class
Syntax hints:    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393    =/= wne 2204   A.wral 2306   E!wreu 2308    \ cdif 2914    C_ wss 2917   {csn 3375   class class class wbr 3764    X. cxp 4343    |` cres 4347    Fn wfn 4897   iota_crio 5467  (class class class)co 5512    |-> cmpt2 5514   CCcc 6887   0cc0 6889    x. cmul 6894   # cap 7572    / cdiv 7651   NNcn 7914   ZZcz 8245
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652  df-inn 7915  df-z 8246
This theorem is referenced by:  elq  8557
  Copyright terms: Public domain W3C validator