Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotabidva Unicode version

Theorem riotabidva 5484
 Description: Equivalent wff's yield equal restricted class abstractions (deduction rule). (rabbidva 2548 analog.) (Contributed by NM, 17-Jan-2012.)
Hypothesis
Ref Expression
riotabidva.1
Assertion
Ref Expression
riotabidva
Distinct variable group:   ,
Allowed substitution hints:   ()   ()   ()

Proof of Theorem riotabidva
StepHypRef Expression
1 riotabidva.1 . . . 4
21pm5.32da 425 . . 3
32iotabidv 4888 . 2
4 df-riota 5468 . 2
5 df-riota 5468 . 2
63, 4, 53eqtr4g 2097 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97   wb 98   wceq 1243   wcel 1393  cio 4865  crio 5467 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rex 2312  df-uni 3581  df-iota 4867  df-riota 5468 This theorem is referenced by:  riotabiia  5485  divfnzn  8556
 Copyright terms: Public domain W3C validator