Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reseq1i | Unicode version |
Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
reseqi.1 |
Ref | Expression |
---|---|
reseq1i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseqi.1 | . 2 | |
2 | reseq1 4606 | . 2 | |
3 | 1, 2 | ax-mp 7 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1243 cres 4347 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-in 2924 df-res 4357 |
This theorem is referenced by: reseq12i 4610 resmpt 4656 resmpt3 4657 opabresid 4659 rescnvcnv 4783 coires1 4838 fcoi1 5070 fvsnun1 5360 fvsnun2 5361 resoprab 5597 resmpt2 5599 ofmres 5763 f1stres 5786 f2ndres 5787 df1st2 5840 df2nd2 5841 dftpos2 5876 tfr2a 5936 frecsuclem1 5987 frecsuclem2 5989 divfnzn 8556 |
Copyright terms: Public domain | W3C validator |