ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemnbj Unicode version

Theorem caucvgprprlemnbj 6791
Description: Lemma for caucvgprpr 6810. Non-existence of two elements of the sequence which are too far from each other. (Contributed by Jim Kingdon, 17-Jun-2021.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
caucvgprprlemnbj.b  |-  ( ph  ->  B  e.  N. )
caucvgprprlemnbj.j  |-  ( ph  ->  J  e.  N. )
Assertion
Ref Expression
caucvgprprlemnbj  |-  ( ph  ->  -.  ( ( ( F `  B )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >. )  <P  ( F `  J
) )
Distinct variable groups:    B, k, l, n    u, B, k, n    k, F, n   
k, J, l, n   
u, J
Allowed substitution hints:    ph( u, k, n, l)    F( u, l)

Proof of Theorem caucvgprprlemnbj
Dummy variables  p  q  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgprpr.f . . . . . . 7  |-  ( ph  ->  F : N. --> P. )
2 caucvgprpr.cau . . . . . . 7  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
31, 2caucvgprprlemval 6786 . . . . . 6  |-  ( (
ph  /\  B  <N  J )  ->  ( ( F `  B )  <P  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  /\  ( F `  J
)  <P  ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. ) ) )
43simprd 107 . . . . 5  |-  ( (
ph  /\  B  <N  J )  ->  ( F `  J )  <P  (
( F `  B
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
5 caucvgprprlemnbj.b . . . . . . . . 9  |-  ( ph  ->  B  e.  N. )
61, 5ffvelrnd 5303 . . . . . . . 8  |-  ( ph  ->  ( F `  B
)  e.  P. )
7 recnnpr 6646 . . . . . . . . 9  |-  ( B  e.  N.  ->  <. { p  |  p  <Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >.  e.  P. )
85, 7syl 14 . . . . . . . 8  |-  ( ph  -> 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )
9 addclpr 6635 . . . . . . . 8  |-  ( ( ( F `  B
)  e.  P.  /\  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )  ->  (
( F `  B
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  e.  P. )
106, 8, 9syl2anc 391 . . . . . . 7  |-  ( ph  ->  ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  e.  P. )
11 caucvgprprlemnbj.j . . . . . . . 8  |-  ( ph  ->  J  e.  N. )
12 recnnpr 6646 . . . . . . . 8  |-  ( J  e.  N.  ->  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >.  e.  P. )
1311, 12syl 14 . . . . . . 7  |-  ( ph  -> 
<. { p  |  p 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )
14 ltaddpr 6695 . . . . . . 7  |-  ( ( ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  e.  P.  /\  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >.  e.  P. )  ->  ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )
1510, 13, 14syl2anc 391 . . . . . 6  |-  ( ph  ->  ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )
1615adantr 261 . . . . 5  |-  ( (
ph  /\  B  <N  J )  ->  ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  (
( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )
17 ltsopr 6694 . . . . . 6  |-  <P  Or  P.
18 ltrelpr 6603 . . . . . 6  |-  <P  C_  ( P.  X.  P. )
1917, 18sotri 4720 . . . . 5  |-  ( ( ( F `  J
)  <P  ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  /\  ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )  -> 
( F `  J
)  <P  ( ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
204, 16, 19syl2anc 391 . . . 4  |-  ( (
ph  /\  B  <N  J )  ->  ( F `  J )  <P  (
( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )
21 ltaddpr 6695 . . . . . . . 8  |-  ( ( ( F `  B
)  e.  P.  /\  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )  ->  ( F `  B )  <P  ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
226, 8, 21syl2anc 391 . . . . . . 7  |-  ( ph  ->  ( F `  B
)  <P  ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. ) )
2322adantr 261 . . . . . 6  |-  ( (
ph  /\  B  =  J )  ->  ( F `  B )  <P  ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
24 fveq2 5178 . . . . . . . 8  |-  ( B  =  J  ->  ( F `  B )  =  ( F `  J ) )
2524breq1d 3774 . . . . . . 7  |-  ( B  =  J  ->  (
( F `  B
)  <P  ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  <-> 
( F `  J
)  <P  ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. ) ) )
2625adantl 262 . . . . . 6  |-  ( (
ph  /\  B  =  J )  ->  (
( F `  B
)  <P  ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  <-> 
( F `  J
)  <P  ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. ) ) )
2723, 26mpbid 135 . . . . 5  |-  ( (
ph  /\  B  =  J )  ->  ( F `  J )  <P  ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
2815adantr 261 . . . . 5  |-  ( (
ph  /\  B  =  J )  ->  (
( F `  B
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )
2927, 28, 19syl2anc 391 . . . 4  |-  ( (
ph  /\  B  =  J )  ->  ( F `  J )  <P  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )
301, 2caucvgprprlemval 6786 . . . . . 6  |-  ( (
ph  /\  J  <N  B )  ->  ( ( F `  J )  <P  ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  /\  ( F `  B
)  <P  ( ( F `
 J )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) ) )
3130simpld 105 . . . . 5  |-  ( (
ph  /\  J  <N  B )  ->  ( F `  J )  <P  (
( F `  B
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
32 ltaprg 6717 . . . . . . . . 9  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  ->  (
x  <P  y  <->  ( z  +P.  x )  <P  (
z  +P.  y )
) )
3332adantl 262 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  P.  /\  y  e. 
P.  /\  z  e.  P. ) )  ->  (
x  <P  y  <->  ( z  +P.  x )  <P  (
z  +P.  y )
) )
34 addcomprg 6676 . . . . . . . . 9  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  +P.  y
)  =  ( y  +P.  x ) )
3534adantl 262 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  P.  /\  y  e. 
P. ) )  -> 
( x  +P.  y
)  =  ( y  +P.  x ) )
3633, 6, 10, 13, 35caovord2d 5670 . . . . . . 7  |-  ( ph  ->  ( ( F `  B )  <P  (
( F `  B
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  <->  ( ( F `  B
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) ) )
3722, 36mpbid 135 . . . . . 6  |-  ( ph  ->  ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )
3837adantr 261 . . . . 5  |-  ( (
ph  /\  J  <N  B )  ->  ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  (
( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )
3917, 18sotri 4720 . . . . 5  |-  ( ( ( F `  J
)  <P  ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  /\  ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )  -> 
( F `  J
)  <P  ( ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
4031, 38, 39syl2anc 391 . . . 4  |-  ( (
ph  /\  J  <N  B )  ->  ( F `  J )  <P  (
( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )
41 pitri3or 6420 . . . . 5  |-  ( ( B  e.  N.  /\  J  e.  N. )  ->  ( B  <N  J  \/  B  =  J  \/  J  <N  B ) )
425, 11, 41syl2anc 391 . . . 4  |-  ( ph  ->  ( B  <N  J  \/  B  =  J  \/  J  <N  B ) )
4320, 29, 40, 42mpjao3dan 1202 . . 3  |-  ( ph  ->  ( F `  J
)  <P  ( ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
441, 11ffvelrnd 5303 . . . . 5  |-  ( ph  ->  ( F `  J
)  e.  P. )
45 addclpr 6635 . . . . . 6  |-  ( ( ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  e.  P.  /\  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >.  e.  P. )  ->  ( ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  e.  P. )
4610, 13, 45syl2anc 391 . . . . 5  |-  ( ph  ->  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  e.  P. )
47 so2nr 4058 . . . . . 6  |-  ( ( 
<P  Or  P.  /\  (
( F `  J
)  e.  P.  /\  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  e.  P. ) )  ->  -.  ( ( F `  J )  <P  (
( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  /\  (
( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  ( F `  J )
) )
4817, 47mpan 400 . . . . 5  |-  ( ( ( F `  J
)  e.  P.  /\  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  e.  P. )  ->  -.  ( ( F `  J )  <P  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  /\  (
( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  ( F `  J )
) )
4944, 46, 48syl2anc 391 . . . 4  |-  ( ph  ->  -.  ( ( F `
 J )  <P 
( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  /\  (
( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  ( F `  J )
) )
50 imnan 624 . . . 4  |-  ( ( ( F `  J
)  <P  ( ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  ->  -.  ( ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  J
) )  <->  -.  (
( F `  J
)  <P  ( ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  /\  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  ( F `  J )
) )
5149, 50sylibr 137 . . 3  |-  ( ph  ->  ( ( F `  J )  <P  (
( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  ->  -.  ( ( ( F `
 B )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  ( F `  J )
) )
5243, 51mpd 13 . 2  |-  ( ph  ->  -.  ( ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  J
) )
53 breq1 3767 . . . . . . 7  |-  ( p  =  l  ->  (
p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <->  l  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) ) )
5453cbvabv 2161 . . . . . 6  |-  { p  |  p  <Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  ) }  =  { l  |  l  <Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  ) }
55 breq2 3768 . . . . . . 7  |-  ( q  =  u  ->  (
( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q  <->  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  u ) )
5655cbvabv 2161 . . . . . 6  |-  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q }  =  {
u  |  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )  <Q  u }
5754, 56opeq12i 3554 . . . . 5  |-  <. { p  |  p  <Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >.  =  <. { l  |  l  <Q 
( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  u } >.
5857oveq2i 5523 . . . 4  |-  ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  q } >. )  =  ( ( F `  B
)  +P.  <. { l  |  l  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  u } >. )
59 breq1 3767 . . . . . 6  |-  ( p  =  l  ->  (
p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <->  l  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) )
6059cbvabv 2161 . . . . 5  |-  { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) }  =  { l  |  l  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) }
61 breq2 3768 . . . . . 6  |-  ( q  =  u  ->  (
( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q  <->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u ) )
6261cbvabv 2161 . . . . 5  |-  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q }  =  {
u  |  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )  <Q  u }
6360, 62opeq12i 3554 . . . 4  |-  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >.  =  <. { l  |  l  <Q 
( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >.
6458, 63oveq12i 5524 . . 3  |-  ( ( ( F `  B
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  =  ( ( ( F `  B )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >. )
6564breq1i 3771 . 2  |-  ( ( ( ( F `  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  ( F `  J )  <->  ( ( ( F `  B )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >. )  <P  ( F `  J )
)
6652, 65sylnib 601 1  |-  ( ph  ->  -.  ( ( ( F `  B )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >. )  <P  ( F `  J
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    <-> wb 98    \/ w3o 884    /\ w3a 885    = wceq 1243    e. wcel 1393   {cab 2026   A.wral 2306   <.cop 3378   class class class wbr 3764    Or wor 4032   -->wf 4898   ` cfv 4902  (class class class)co 5512   1oc1o 5994   [cec 6104   N.cnpi 6370    <N clti 6373    ~Q ceq 6377   *Qcrq 6382    <Q cltq 6383   P.cnp 6389    +P. cpp 6391    <P cltp 6393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-iplp 6566  df-iltp 6568
This theorem is referenced by:  caucvgprprlemaddq  6806
  Copyright terms: Public domain W3C validator