ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemml Unicode version

Theorem caucvgprprlemml 6792
Description: Lemma for caucvgprpr 6810. The lower cut of the putative limit is inhabited. (Contributed by Jim Kingdon, 29-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
caucvgprpr.bnd  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
caucvgprpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
Assertion
Ref Expression
caucvgprprlemml  |-  ( ph  ->  E. s  e.  Q.  s  e.  ( 1st `  L ) )
Distinct variable groups:    A, m    m, F    A, r, m    A, s, r    F, l    p, l, q, r, s    u, l    ph, r, s
Allowed substitution hints:    ph( u, k, m, n, q, p, l)    A( u, k, n, q, p, l)    F( u, k, n, s, r, q, p)    L( u, k, m, n, s, r, q, p, l)

Proof of Theorem caucvgprprlemml
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 1pi 6413 . . . . 5  |-  1o  e.  N.
2 caucvgprpr.bnd . . . . 5  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
3 fveq2 5178 . . . . . . 7  |-  ( m  =  1o  ->  ( F `  m )  =  ( F `  1o ) )
43breq2d 3776 . . . . . 6  |-  ( m  =  1o  ->  ( A  <P  ( F `  m )  <->  A  <P  ( F `  1o ) ) )
54rspcv 2652 . . . . 5  |-  ( 1o  e.  N.  ->  ( A. m  e.  N.  A  <P  ( F `  m )  ->  A  <P  ( F `  1o ) ) )
61, 2, 5mpsyl 59 . . . 4  |-  ( ph  ->  A  <P  ( F `  1o ) )
7 ltrelpr 6603 . . . . . 6  |-  <P  C_  ( P.  X.  P. )
87brel 4392 . . . . 5  |-  ( A 
<P  ( F `  1o )  ->  ( A  e. 
P.  /\  ( F `  1o )  e.  P. ) )
98simpld 105 . . . 4  |-  ( A 
<P  ( F `  1o )  ->  A  e.  P. )
106, 9syl 14 . . 3  |-  ( ph  ->  A  e.  P. )
11 prop 6573 . . . 4  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
12 prml 6575 . . . 4  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  ->  E. x  e.  Q.  x  e.  ( 1st `  A ) )
1311, 12syl 14 . . 3  |-  ( A  e.  P.  ->  E. x  e.  Q.  x  e.  ( 1st `  A ) )
1410, 13syl 14 . 2  |-  ( ph  ->  E. x  e.  Q.  x  e.  ( 1st `  A ) )
15 subhalfnqq 6512 . . . 4  |-  ( x  e.  Q.  ->  E. s  e.  Q.  ( s  +Q  s )  <Q  x
)
1615ad2antrl 459 . . 3  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  ->  E. s  e.  Q.  ( s  +Q  s
)  <Q  x )
17 simplr 482 . . . . . 6  |-  ( ( ( ( ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A ) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s )  <Q  x
)  ->  s  e.  Q. )
18 archrecnq 6761 . . . . . . . 8  |-  ( s  e.  Q.  ->  E. r  e.  N.  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
s )
1917, 18syl 14 . . . . . . 7  |-  ( ( ( ( ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A ) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s )  <Q  x
)  ->  E. r  e.  N.  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
s )
20 simpr 103 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
s )
21 simplr 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  r  e.  N. )
22 nnnq 6520 . . . . . . . . . . . . . . . 16  |-  ( r  e.  N.  ->  [ <. r ,  1o >. ]  ~Q  e.  Q. )
23 recclnq 6490 . . . . . . . . . . . . . . . 16  |-  ( [
<. r ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  e.  Q. )
2421, 22, 233syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  e. 
Q. )
2517ad2antrr 457 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  s  e.  Q. )
26 ltanqg 6498 . . . . . . . . . . . . . . 15  |-  ( ( ( *Q `  [ <. r ,  1o >. ]  ~Q  )  e.  Q.  /\  s  e.  Q.  /\  s  e.  Q. )  ->  ( ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
s  <->  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
( s  +Q  s
) ) )
2724, 25, 25, 26syl3anc 1135 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  ( ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s  <->  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
( s  +Q  s
) ) )
2820, 27mpbid 135 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
( s  +Q  s
) )
29 simpllr 486 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  ( s  +Q  s )  <Q  x
)
30 ltsonq 6496 . . . . . . . . . . . . . 14  |-  <Q  Or  Q.
31 ltrelnq 6463 . . . . . . . . . . . . . 14  |-  <Q  C_  ( Q.  X.  Q. )
3230, 31sotri 4720 . . . . . . . . . . . . 13  |-  ( ( ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  ( s  +Q  s )  /\  (
s  +Q  s ) 
<Q  x )  ->  (
s  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
)  <Q  x )
3328, 29, 32syl2anc 391 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  x )
3410ad5antr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  A  e.  P. )
35 simprr 484 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  ->  x  e.  ( 1st `  A ) )
3635ad4antr 463 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  x  e.  ( 1st `  A ) )
37 prcdnql 6582 . . . . . . . . . . . . . 14  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  x  e.  ( 1st `  A ) )  -> 
( ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  x  ->  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  e.  ( 1st `  A
) ) )
3811, 37sylan 267 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  x  e.  ( 1st `  A ) )  -> 
( ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  x  ->  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  e.  ( 1st `  A
) ) )
3934, 36, 38syl2anc 391 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  ( (
s  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
)  <Q  x  ->  (
s  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
)  e.  ( 1st `  A ) ) )
4033, 39mpd 13 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  e.  ( 1st `  A
) )
41 addclnq 6473 . . . . . . . . . . . . 13  |-  ( ( s  e.  Q.  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  e.  Q. )  ->  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  e.  Q. )
4225, 24, 41syl2anc 391 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  e. 
Q. )
43 nqprl 6649 . . . . . . . . . . . 12  |-  ( ( ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  e.  Q.  /\  A  e.  P. )  ->  ( ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  e.  ( 1st `  A
)  <->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P  A ) )
4442, 34, 43syl2anc 391 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  ( (
s  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
)  e.  ( 1st `  A )  <->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  A ) )
4540, 44mpbid 135 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  A )
462ad5antr 465 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  A. m  e.  N.  A  <P  ( F `  m )
)
47 fveq2 5178 . . . . . . . . . . . . 13  |-  ( m  =  r  ->  ( F `  m )  =  ( F `  r ) )
4847breq2d 3776 . . . . . . . . . . . 12  |-  ( m  =  r  ->  ( A  <P  ( F `  m )  <->  A  <P  ( F `  r ) ) )
4948rspcv 2652 . . . . . . . . . . 11  |-  ( r  e.  N.  ->  ( A. m  e.  N.  A  <P  ( F `  m )  ->  A  <P  ( F `  r
) ) )
5021, 46, 49sylc 56 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  A  <P  ( F `  r ) )
51 ltsopr 6694 . . . . . . . . . . 11  |-  <P  Or  P.
5251, 7sotri 4720 . . . . . . . . . 10  |-  ( (
<. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  A  /\  A  <P  ( F `  r ) )  ->  <. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )
)
5345, 50, 52syl2anc 391 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  r )
)
5453ex 108 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A ) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s )  <Q  x
)  /\  r  e.  N. )  ->  ( ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s  ->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  r )
) )
5554reximdva 2421 . . . . . . 7  |-  ( ( ( ( ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A ) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s )  <Q  x
)  ->  ( E. r  e.  N.  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s  ->  E. r  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  r
) ) )
5619, 55mpd 13 . . . . . 6  |-  ( ( ( ( ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A ) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s )  <Q  x
)  ->  E. r  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  r
) )
57 oveq1 5519 . . . . . . . . . . . 12  |-  ( l  =  s  ->  (
l  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
)  =  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) )
5857breq2d 3776 . . . . . . . . . . 11  |-  ( l  =  s  ->  (
p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <->  p  <Q  ( s  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
) ) )
5958abbidv 2155 . . . . . . . . . 10  |-  ( l  =  s  ->  { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) }  =  { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } )
6057breq1d 3774 . . . . . . . . . . 11  |-  ( l  =  s  ->  (
( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q  <->  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q ) )
6160abbidv 2155 . . . . . . . . . 10  |-  ( l  =  s  ->  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q }  =  {
q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } )
6259, 61opeq12d 3557 . . . . . . . . 9  |-  ( l  =  s  ->  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  =  <. { p  |  p  <Q  ( s  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >. )
6362breq1d 3774 . . . . . . . 8  |-  ( l  =  s  ->  ( <. { p  |  p 
<Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )  <->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )
) )
6463rexbidv 2327 . . . . . . 7  |-  ( l  =  s  ->  ( E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )  <->  E. r  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )
) )
65 caucvgprpr.lim . . . . . . . . 9  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
6665fveq2i 5181 . . . . . . . 8  |-  ( 1st `  L )  =  ( 1st `  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >. )
67 nqex 6461 . . . . . . . . . 10  |-  Q.  e.  _V
6867rabex 3901 . . . . . . . . 9  |-  { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  r ) }  e.  _V
6967rabex 3901 . . . . . . . . 9  |-  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. }  e.  _V
7068, 69op1st 5773 . . . . . . . 8  |-  ( 1st `  <. { l  e. 
Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  r
) } ,  {
u  e.  Q.  |  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >. } >. )  =  { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) }
7166, 70eqtri 2060 . . . . . . 7  |-  ( 1st `  L )  =  {
l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) }
7264, 71elrab2 2700 . . . . . 6  |-  ( s  e.  ( 1st `  L
)  <->  ( s  e. 
Q.  /\  E. r  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  r
) ) )
7317, 56, 72sylanbrc 394 . . . . 5  |-  ( ( ( ( ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A ) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s )  <Q  x
)  ->  s  e.  ( 1st `  L ) )
7473ex 108 . . . 4  |-  ( ( ( ph  /\  (
x  e.  Q.  /\  x  e.  ( 1st `  A ) ) )  /\  s  e.  Q. )  ->  ( ( s  +Q  s )  <Q  x  ->  s  e.  ( 1st `  L ) ) )
7574reximdva 2421 . . 3  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  -> 
( E. s  e. 
Q.  ( s  +Q  s )  <Q  x  ->  E. s  e.  Q.  s  e.  ( 1st `  L ) ) )
7616, 75mpd 13 . 2  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  ->  E. s  e.  Q.  s  e.  ( 1st `  L ) )
7714, 76rexlimddv 2437 1  |-  ( ph  ->  E. s  e.  Q.  s  e.  ( 1st `  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393   {cab 2026   A.wral 2306   E.wrex 2307   {crab 2310   <.cop 3378   class class class wbr 3764   -->wf 4898   ` cfv 4902  (class class class)co 5512   1stc1st 5765   2ndc2nd 5766   1oc1o 5994   [cec 6104   N.cnpi 6370    <N clti 6373    ~Q ceq 6377   Q.cnq 6378    +Q cplq 6380   *Qcrq 6382    <Q cltq 6383   P.cnp 6389    +P. cpp 6391    <P cltp 6393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-inp 6564  df-iltp 6568
This theorem is referenced by:  caucvgprprlemm  6794
  Copyright terms: Public domain W3C validator