Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caucvgprpr | Unicode version |
Description: A Cauchy sequence of
positive reals with a modulus of convergence
converges to a positive real. This is basically Corollary 11.2.13 of
[HoTT], p. (varies) (one key difference
being that this is for
positive reals rather than signed reals). Also, the HoTT book theorem
has a modulus of convergence (that is, a rate of convergence)
specified by (11.2.9) in HoTT whereas this theorem fixes the rate of
convergence to say that all terms after the nth term must be within
of the nth term (it should later be able
to prove versions
of this theorem with a different fixed rate or a modulus of
convergence supplied as a hypothesis). We also specify that every
term needs to be larger than a given value , to avoid the case
where we have positive terms which "converge" to zero (which
is not a
positive real).
This is similar to caucvgpr 6780 except that values of the sequence are positive reals rather than positive fractions. Reading that proof first (or cauappcvgpr 6760) might help in understanding this one, as they are slightly simpler but similarly structured. (Contributed by Jim Kingdon, 14-Nov-2020.) |
Ref | Expression |
---|---|
caucvgprpr.f | |
caucvgprpr.cau | |
caucvgprpr.bnd |
Ref | Expression |
---|---|
caucvgprpr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvgprpr.f | . . 3 | |
2 | caucvgprpr.cau | . . 3 | |
3 | caucvgprpr.bnd | . . 3 | |
4 | eqid 2040 | . . 3 | |
5 | 1, 2, 3, 4 | caucvgprprlemcl 6802 | . 2 |
6 | 1, 2, 3, 4 | caucvgprprlemlim 6809 | . 2 |
7 | oveq1 5519 | . . . . . . . 8 | |
8 | 7 | breq2d 3776 | . . . . . . 7 |
9 | breq1 3767 | . . . . . . 7 | |
10 | 8, 9 | anbi12d 442 | . . . . . 6 |
11 | 10 | imbi2d 219 | . . . . 5 |
12 | 11 | rexralbidv 2350 | . . . 4 |
13 | 12 | ralbidv 2326 | . . 3 |
14 | 13 | rspcev 2656 | . 2 |
15 | 5, 6, 14 | syl2anc 391 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wceq 1243 wcel 1393 cab 2026 wral 2306 wrex 2307 crab 2310 cop 3378 class class class wbr 3764 wf 4898 cfv 4902 (class class class)co 5512 c1o 5994 cec 6104 cnpi 6370 clti 6373 ceq 6377 cnq 6378 cplq 6380 crq 6382 cltq 6383 cnp 6389 cpp 6391 cltp 6393 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-coll 3872 ax-sep 3875 ax-nul 3883 ax-pow 3927 ax-pr 3944 ax-un 4170 ax-setind 4262 ax-iinf 4311 |
This theorem depends on definitions: df-bi 110 df-dc 743 df-3or 886 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-rex 2312 df-reu 2313 df-rab 2315 df-v 2559 df-sbc 2765 df-csb 2853 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-int 3616 df-iun 3659 df-br 3765 df-opab 3819 df-mpt 3820 df-tr 3855 df-eprel 4026 df-id 4030 df-po 4033 df-iso 4034 df-iord 4103 df-on 4105 df-suc 4108 df-iom 4314 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fun 4904 df-fn 4905 df-f 4906 df-f1 4907 df-fo 4908 df-f1o 4909 df-fv 4910 df-ov 5515 df-oprab 5516 df-mpt2 5517 df-1st 5767 df-2nd 5768 df-recs 5920 df-irdg 5957 df-1o 6001 df-2o 6002 df-oadd 6005 df-omul 6006 df-er 6106 df-ec 6108 df-qs 6112 df-ni 6402 df-pli 6403 df-mi 6404 df-lti 6405 df-plpq 6442 df-mpq 6443 df-enq 6445 df-nqqs 6446 df-plqqs 6447 df-mqqs 6448 df-1nqqs 6449 df-rq 6450 df-ltnqqs 6451 df-enq0 6522 df-nq0 6523 df-0nq0 6524 df-plq0 6525 df-mq0 6526 df-inp 6564 df-iplp 6566 df-iltp 6568 |
This theorem is referenced by: caucvgsrlemgt1 6879 |
Copyright terms: Public domain | W3C validator |