![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mtbir | GIF version |
Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.) |
Ref | Expression |
---|---|
mtbir.1 | ⊢ ¬ 𝜓 |
mtbir.2 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
mtbir | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbir.1 | . 2 ⊢ ¬ 𝜓 | |
2 | mtbir.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | bicomi 123 | . 2 ⊢ (𝜓 ↔ 𝜑) |
4 | 1, 3 | mtbi 595 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 98 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: fal 1250 ax-9 1424 nonconne 2217 nemtbir 2294 ru 2763 pssirr 3044 noel 3228 npss0 3266 iun0 3713 0iun 3714 vprc 3888 iin0r 3922 nlim0 4131 snnex 4181 onsucelsucexmid 4255 0nelxp 4372 dm0 4549 iprc 4600 co02 4834 0fv 5208 frec0g 5983 0nnq 6462 0npr 6581 nqprdisj 6642 0ncn 6908 axpre-ltirr 6956 pnfnre 7067 mnfnre 7068 inelr 7575 xrltnr 8701 fzo0 9024 fzouzdisj 9036 sqrt2irr 9878 nnexmid 9899 nndc 9900 bj-vprc 10016 |
Copyright terms: Public domain | W3C validator |