ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iprc Structured version   GIF version

Theorem iprc 4543
Description: The identity function is a proper class. This means, for example, that we cannot use it as a member of the class of continuous functions unless it is restricted to a set. (Contributed by NM, 1-Jan-2007.)
Assertion
Ref Expression
iprc ¬ I V

Proof of Theorem iprc
StepHypRef Expression
1 vprc 3879 . . 3 ¬ V V
2 dmi 4493 . . . 4 dom I = V
32eleq1i 2100 . . 3 (dom I V ↔ V V)
41, 3mtbir 595 . 2 ¬ dom I V
5 dmexg 4539 . 2 ( I V → dom I V)
64, 5mto 587 1 ¬ I V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   wcel 1390  Vcvv 2551   I cid 4016  dom cdm 4288
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-13 1401  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935  ax-un 4136
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-fal 1248  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-uni 3572  df-br 3756  df-opab 3810  df-id 4021  df-xp 4294  df-rel 4295  df-cnv 4296  df-dm 4298  df-rn 4299
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator