ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snnex GIF version

Theorem snnex 4181
Description: The class of all singletons is a proper class. (Contributed by NM, 10-Oct-2008.) (Proof shortened by Eric Schmidt, 7-Dec-2008.)
Assertion
Ref Expression
snnex {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V
Distinct variable group:   𝑥,𝑦

Proof of Theorem snnex
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 vprc 3888 . . . 4 ¬ V ∈ V
2 vex 2560 . . . . . . . . . 10 𝑧 ∈ V
32snid 3402 . . . . . . . . 9 𝑧 ∈ {𝑧}
4 a9ev 1587 . . . . . . . . . 10 𝑦 𝑦 = 𝑧
5 sneq 3386 . . . . . . . . . . 11 (𝑧 = 𝑦 → {𝑧} = {𝑦})
65equcoms 1594 . . . . . . . . . 10 (𝑦 = 𝑧 → {𝑧} = {𝑦})
74, 6eximii 1493 . . . . . . . . 9 𝑦{𝑧} = {𝑦}
8 snexgOLD 3935 . . . . . . . . . . 11 (𝑧 ∈ V → {𝑧} ∈ V)
92, 8ax-mp 7 . . . . . . . . . 10 {𝑧} ∈ V
10 eleq2 2101 . . . . . . . . . . 11 (𝑥 = {𝑧} → (𝑧𝑥𝑧 ∈ {𝑧}))
11 eqeq1 2046 . . . . . . . . . . . 12 (𝑥 = {𝑧} → (𝑥 = {𝑦} ↔ {𝑧} = {𝑦}))
1211exbidv 1706 . . . . . . . . . . 11 (𝑥 = {𝑧} → (∃𝑦 𝑥 = {𝑦} ↔ ∃𝑦{𝑧} = {𝑦}))
1310, 12anbi12d 442 . . . . . . . . . 10 (𝑥 = {𝑧} → ((𝑧𝑥 ∧ ∃𝑦 𝑥 = {𝑦}) ↔ (𝑧 ∈ {𝑧} ∧ ∃𝑦{𝑧} = {𝑦})))
149, 13spcev 2647 . . . . . . . . 9 ((𝑧 ∈ {𝑧} ∧ ∃𝑦{𝑧} = {𝑦}) → ∃𝑥(𝑧𝑥 ∧ ∃𝑦 𝑥 = {𝑦}))
153, 7, 14mp2an 402 . . . . . . . 8 𝑥(𝑧𝑥 ∧ ∃𝑦 𝑥 = {𝑦})
16 eluniab 3592 . . . . . . . 8 (𝑧 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ↔ ∃𝑥(𝑧𝑥 ∧ ∃𝑦 𝑥 = {𝑦}))
1715, 16mpbir 134 . . . . . . 7 𝑧 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}}
1817, 22th 163 . . . . . 6 (𝑧 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ↔ 𝑧 ∈ V)
1918eqriv 2037 . . . . 5 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} = V
2019eleq1i 2103 . . . 4 ( {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V ↔ V ∈ V)
211, 20mtbir 596 . . 3 ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V
22 uniexg 4175 . . 3 ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V)
2321, 22mto 588 . 2 ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V
2423nelir 2300 1 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V
Colors of variables: wff set class
Syntax hints:  wa 97   = wceq 1243  wex 1381  wcel 1393  {cab 2026  wnel 2205  Vcvv 2557  {csn 3375   cuni 3580
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-nel 2207  df-rex 2312  df-v 2559  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-uni 3581
This theorem is referenced by:  fiprc  6292
  Copyright terms: Public domain W3C validator