![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dm0 | GIF version |
Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dm0 | ⊢ dom ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eq0 3239 | . 2 ⊢ (dom ∅ = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom ∅) | |
2 | noel 3228 | . . . 4 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
3 | 2 | nex 1389 | . . 3 ⊢ ¬ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅ |
4 | vex 2560 | . . . 4 ⊢ 𝑥 ∈ V | |
5 | 4 | eldm2 4533 | . . 3 ⊢ (𝑥 ∈ dom ∅ ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅) |
6 | 3, 5 | mtbir 596 | . 2 ⊢ ¬ 𝑥 ∈ dom ∅ |
7 | 1, 6 | mpgbir 1342 | 1 ⊢ dom ∅ = ∅ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1243 ∃wex 1381 ∈ wcel 1393 ∅c0 3224 〈cop 3378 dom cdm 4345 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-dif 2920 df-un 2922 df-nul 3225 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-dm 4355 |
This theorem is referenced by: rn0 4588 fn0 5018 f1o00 5161 rdg0 5974 frec0g 5983 |
Copyright terms: Public domain | W3C validator |