![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > npss0 | GIF version |
Description: No set is a proper subset of the empty set. (Contributed by NM, 17-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
npss0 | ⊢ ¬ 𝐴 ⊊ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 3255 | . . . 4 ⊢ ∅ ⊆ 𝐴 | |
2 | 1 | a1i 9 | . . 3 ⊢ (𝐴 ⊆ ∅ → ∅ ⊆ 𝐴) |
3 | imanim 785 | . . 3 ⊢ ((𝐴 ⊆ ∅ → ∅ ⊆ 𝐴) → ¬ (𝐴 ⊆ ∅ ∧ ¬ ∅ ⊆ 𝐴)) | |
4 | 2, 3 | ax-mp 7 | . 2 ⊢ ¬ (𝐴 ⊆ ∅ ∧ ¬ ∅ ⊆ 𝐴) |
5 | dfpss3 3030 | . 2 ⊢ (𝐴 ⊊ ∅ ↔ (𝐴 ⊆ ∅ ∧ ¬ ∅ ⊆ 𝐴)) | |
6 | 4, 5 | mtbir 596 | 1 ⊢ ¬ 𝐴 ⊊ ∅ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 97 ⊆ wss 2917 ⊊ wpss 2918 ∅c0 3224 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-v 2559 df-dif 2920 df-in 2924 df-ss 2931 df-pss 2933 df-nul 3225 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |