![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pssv | GIF version |
Description: Any non-universal class is a proper subclass of the universal class. (Contributed by NM, 17-May-1998.) |
Ref | Expression |
---|---|
pssv | ⊢ (A ⊊ V ↔ ¬ A = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 2959 | . 2 ⊢ A ⊆ V | |
2 | dfpss2 3023 | . 2 ⊢ (A ⊊ V ↔ (A ⊆ V ∧ ¬ A = V)) | |
3 | 1, 2 | mpbiran 846 | 1 ⊢ (A ⊊ V ↔ ¬ A = V) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 98 = wceq 1242 Vcvv 2551 ⊆ wss 2911 ⊊ wpss 2912 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-11 1394 ax-4 1397 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 |
This theorem depends on definitions: df-bi 110 df-nf 1347 df-sb 1643 df-clab 2024 df-cleq 2030 df-clel 2033 df-ne 2203 df-v 2553 df-in 2918 df-ss 2925 df-pss 2927 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |