Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nndc Structured version   GIF version

Theorem nndc 9169
Description: Double negation of decidability of a formula. Intuitionistic logic refutes undecidability (but, of course, does not prove decidability) of any formula. (Contributed by BJ, 9-Oct-2019.)
Assertion
Ref Expression
nndc ¬ ¬ DECID φ

Proof of Theorem nndc
StepHypRef Expression
1 nnexmid 9168 . 2 ¬ ¬ (φ ¬ φ)
2 df-dc 742 . . 3 (DECID φ ↔ (φ ¬ φ))
32notbii 593 . 2 DECID φ ↔ ¬ (φ ¬ φ))
41, 3mtbir 595 1 ¬ ¬ DECID φ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   wo 628  DECID wdc 741
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629
This theorem depends on definitions:  df-bi 110  df-dc 742
This theorem is referenced by:  dcdc  9170
  Copyright terms: Public domain W3C validator