ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptssdm GIF version

Theorem fvmptssdm 5255
Description: If all the values of the mapping are subsets of a class 𝐶, then so is any evaluation of the mapping at a value in the domain of the mapping. (Contributed by Jim Kingdon, 3-Jan-2018.)
Hypothesis
Ref Expression
fvmpt2.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fvmptssdm ((𝐷 ∈ dom 𝐹 ∧ ∀𝑥𝐴 𝐵𝐶) → (𝐹𝐷) ⊆ 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝐹(𝑥)

Proof of Theorem fvmptssdm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fveq2 5178 . . . . . 6 (𝑦 = 𝐷 → (𝐹𝑦) = (𝐹𝐷))
21sseq1d 2972 . . . . 5 (𝑦 = 𝐷 → ((𝐹𝑦) ⊆ 𝐶 ↔ (𝐹𝐷) ⊆ 𝐶))
32imbi2d 219 . . . 4 (𝑦 = 𝐷 → ((∀𝑥𝐴 𝐵𝐶 → (𝐹𝑦) ⊆ 𝐶) ↔ (∀𝑥𝐴 𝐵𝐶 → (𝐹𝐷) ⊆ 𝐶)))
4 nfrab1 2489 . . . . . . 7 𝑥{𝑥𝐴𝐵 ∈ V}
54nfcri 2172 . . . . . 6 𝑥 𝑦 ∈ {𝑥𝐴𝐵 ∈ V}
6 nfra1 2355 . . . . . . 7 𝑥𝑥𝐴 𝐵𝐶
7 fvmpt2.1 . . . . . . . . . 10 𝐹 = (𝑥𝐴𝐵)
8 nfmpt1 3850 . . . . . . . . . 10 𝑥(𝑥𝐴𝐵)
97, 8nfcxfr 2175 . . . . . . . . 9 𝑥𝐹
10 nfcv 2178 . . . . . . . . 9 𝑥𝑦
119, 10nffv 5185 . . . . . . . 8 𝑥(𝐹𝑦)
12 nfcv 2178 . . . . . . . 8 𝑥𝐶
1311, 12nfss 2938 . . . . . . 7 𝑥(𝐹𝑦) ⊆ 𝐶
146, 13nfim 1464 . . . . . 6 𝑥(∀𝑥𝐴 𝐵𝐶 → (𝐹𝑦) ⊆ 𝐶)
155, 14nfim 1464 . . . . 5 𝑥(𝑦 ∈ {𝑥𝐴𝐵 ∈ V} → (∀𝑥𝐴 𝐵𝐶 → (𝐹𝑦) ⊆ 𝐶))
16 eleq1 2100 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ∈ {𝑥𝐴𝐵 ∈ V} ↔ 𝑦 ∈ {𝑥𝐴𝐵 ∈ V}))
17 fveq2 5178 . . . . . . . 8 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1817sseq1d 2972 . . . . . . 7 (𝑥 = 𝑦 → ((𝐹𝑥) ⊆ 𝐶 ↔ (𝐹𝑦) ⊆ 𝐶))
1918imbi2d 219 . . . . . 6 (𝑥 = 𝑦 → ((∀𝑥𝐴 𝐵𝐶 → (𝐹𝑥) ⊆ 𝐶) ↔ (∀𝑥𝐴 𝐵𝐶 → (𝐹𝑦) ⊆ 𝐶)))
2016, 19imbi12d 223 . . . . 5 (𝑥 = 𝑦 → ((𝑥 ∈ {𝑥𝐴𝐵 ∈ V} → (∀𝑥𝐴 𝐵𝐶 → (𝐹𝑥) ⊆ 𝐶)) ↔ (𝑦 ∈ {𝑥𝐴𝐵 ∈ V} → (∀𝑥𝐴 𝐵𝐶 → (𝐹𝑦) ⊆ 𝐶))))
217dmmpt 4816 . . . . . . 7 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
2221eleq2i 2104 . . . . . 6 (𝑥 ∈ dom 𝐹𝑥 ∈ {𝑥𝐴𝐵 ∈ V})
2321rabeq2i 2554 . . . . . . . . . 10 (𝑥 ∈ dom 𝐹 ↔ (𝑥𝐴𝐵 ∈ V))
247fvmpt2 5254 . . . . . . . . . . 11 ((𝑥𝐴𝐵 ∈ V) → (𝐹𝑥) = 𝐵)
25 eqimss 2997 . . . . . . . . . . 11 ((𝐹𝑥) = 𝐵 → (𝐹𝑥) ⊆ 𝐵)
2624, 25syl 14 . . . . . . . . . 10 ((𝑥𝐴𝐵 ∈ V) → (𝐹𝑥) ⊆ 𝐵)
2723, 26sylbi 114 . . . . . . . . 9 (𝑥 ∈ dom 𝐹 → (𝐹𝑥) ⊆ 𝐵)
2827adantr 261 . . . . . . . 8 ((𝑥 ∈ dom 𝐹 ∧ ∀𝑥𝐴 𝐵𝐶) → (𝐹𝑥) ⊆ 𝐵)
297dmmptss 4817 . . . . . . . . . 10 dom 𝐹𝐴
3029sseli 2941 . . . . . . . . 9 (𝑥 ∈ dom 𝐹𝑥𝐴)
31 rsp 2369 . . . . . . . . 9 (∀𝑥𝐴 𝐵𝐶 → (𝑥𝐴𝐵𝐶))
3230, 31mpan9 265 . . . . . . . 8 ((𝑥 ∈ dom 𝐹 ∧ ∀𝑥𝐴 𝐵𝐶) → 𝐵𝐶)
3328, 32sstrd 2955 . . . . . . 7 ((𝑥 ∈ dom 𝐹 ∧ ∀𝑥𝐴 𝐵𝐶) → (𝐹𝑥) ⊆ 𝐶)
3433ex 108 . . . . . 6 (𝑥 ∈ dom 𝐹 → (∀𝑥𝐴 𝐵𝐶 → (𝐹𝑥) ⊆ 𝐶))
3522, 34sylbir 125 . . . . 5 (𝑥 ∈ {𝑥𝐴𝐵 ∈ V} → (∀𝑥𝐴 𝐵𝐶 → (𝐹𝑥) ⊆ 𝐶))
3615, 20, 35chvar 1640 . . . 4 (𝑦 ∈ {𝑥𝐴𝐵 ∈ V} → (∀𝑥𝐴 𝐵𝐶 → (𝐹𝑦) ⊆ 𝐶))
373, 36vtoclga 2619 . . 3 (𝐷 ∈ {𝑥𝐴𝐵 ∈ V} → (∀𝑥𝐴 𝐵𝐶 → (𝐹𝐷) ⊆ 𝐶))
3837, 21eleq2s 2132 . 2 (𝐷 ∈ dom 𝐹 → (∀𝑥𝐴 𝐵𝐶 → (𝐹𝐷) ⊆ 𝐶))
3938imp 115 1 ((𝐷 ∈ dom 𝐹 ∧ ∀𝑥𝐴 𝐵𝐶) → (𝐹𝐷) ⊆ 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97   = wceq 1243  wcel 1393  wral 2306  {crab 2310  Vcvv 2557  wss 2917  cmpt 3818  dom cdm 4345  cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fv 4910
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator