ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmptss Structured version   GIF version

Theorem dmmptss 4760
Description: The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.)
Hypothesis
Ref Expression
dmmpt2.1 𝐹 = (x AB)
Assertion
Ref Expression
dmmptss dom 𝐹A
Distinct variable group:   x,A
Allowed substitution hints:   B(x)   𝐹(x)

Proof of Theorem dmmptss
StepHypRef Expression
1 dmmpt2.1 . . 3 𝐹 = (x AB)
21dmmpt 4759 . 2 dom 𝐹 = {x AB V}
3 ssrab2 3019 . 2 {x AB V} ⊆ A
42, 3eqsstri 2969 1 dom 𝐹A
Colors of variables: wff set class
Syntax hints:   = wceq 1242   wcel 1390  {crab 2304  Vcvv 2551  wss 2911  cmpt 3809  dom cdm 4288
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-rab 2309  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-br 3756  df-opab 3810  df-mpt 3811  df-xp 4294  df-rel 4295  df-cnv 4296  df-dm 4298  df-rn 4299  df-res 4300  df-ima 4301
This theorem is referenced by:  fvmptssdm  5198  mptexg  5329  dmmpt2ssx  5767  tposssxp  5805
  Copyright terms: Public domain W3C validator