ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  chvar GIF version

Theorem chvar 1640
Description: Implicit substitution of 𝑦 for 𝑥 into a theorem. (Contributed by Raph Levien, 9-Jul-2003.) (Revised by Mario Carneiro, 3-Oct-2016.)
Hypotheses
Ref Expression
chvar.1 𝑥𝜓
chvar.2 (𝑥 = 𝑦 → (𝜑𝜓))
chvar.3 𝜑
Assertion
Ref Expression
chvar 𝜓

Proof of Theorem chvar
StepHypRef Expression
1 chvar.1 . . 3 𝑥𝜓
2 chvar.2 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
32biimpd 132 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
41, 3spim 1626 . 2 (∀𝑥𝜑𝜓)
5 chvar.3 . 2 𝜑
64, 5mpg 1340 1 𝜓
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98  wnf 1349
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-4 1400  ax-i9 1423  ax-ial 1427
This theorem depends on definitions:  df-bi 110  df-nf 1350
This theorem is referenced by:  csbhypf  2885  opelopabsb  3997  findes  4326  fvmptssdm  5255  dfoprab4f  5819  dom2lem  6252  uzind4s  8533
  Copyright terms: Public domain W3C validator