Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > chvar | GIF version |
Description: Implicit substitution of 𝑦 for 𝑥 into a theorem. (Contributed by Raph Levien, 9-Jul-2003.) (Revised by Mario Carneiro, 3-Oct-2016.) |
Ref | Expression |
---|---|
chvar.1 | ⊢ Ⅎ𝑥𝜓 |
chvar.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
chvar.3 | ⊢ 𝜑 |
Ref | Expression |
---|---|
chvar | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chvar.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | chvar.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 2 | biimpd 132 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
4 | 1, 3 | spim 1626 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) |
5 | chvar.3 | . 2 ⊢ 𝜑 | |
6 | 4, 5 | mpg 1340 | 1 ⊢ 𝜓 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 98 Ⅎwnf 1349 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-i9 1423 ax-ial 1427 |
This theorem depends on definitions: df-bi 110 df-nf 1350 |
This theorem is referenced by: csbhypf 2885 opelopabsb 3997 findes 4326 fvmptssdm 5255 dfoprab4f 5819 dom2lem 6252 uzind4s 8533 |
Copyright terms: Public domain | W3C validator |