![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > caofcom | GIF version |
Description: Transfer a commutative law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.) |
Ref | Expression |
---|---|
caofref.1 | ⊢ (φ → A ∈ 𝑉) |
caofref.2 | ⊢ (φ → 𝐹:A⟶𝑆) |
caofcom.3 | ⊢ (φ → 𝐺:A⟶𝑆) |
caofcom.4 | ⊢ ((φ ∧ (x ∈ 𝑆 ∧ y ∈ 𝑆)) → (x𝑅y) = (y𝑅x)) |
Ref | Expression |
---|---|
caofcom | ⊢ (φ → (𝐹 ∘𝑓 𝑅𝐺) = (𝐺 ∘𝑓 𝑅𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caofref.2 | . . . . . 6 ⊢ (φ → 𝐹:A⟶𝑆) | |
2 | 1 | ffvelrnda 5245 | . . . . 5 ⊢ ((φ ∧ w ∈ A) → (𝐹‘w) ∈ 𝑆) |
3 | caofcom.3 | . . . . . 6 ⊢ (φ → 𝐺:A⟶𝑆) | |
4 | 3 | ffvelrnda 5245 | . . . . 5 ⊢ ((φ ∧ w ∈ A) → (𝐺‘w) ∈ 𝑆) |
5 | 2, 4 | jca 290 | . . . 4 ⊢ ((φ ∧ w ∈ A) → ((𝐹‘w) ∈ 𝑆 ∧ (𝐺‘w) ∈ 𝑆)) |
6 | caofcom.4 | . . . . 5 ⊢ ((φ ∧ (x ∈ 𝑆 ∧ y ∈ 𝑆)) → (x𝑅y) = (y𝑅x)) | |
7 | 6 | caovcomg 5598 | . . . 4 ⊢ ((φ ∧ ((𝐹‘w) ∈ 𝑆 ∧ (𝐺‘w) ∈ 𝑆)) → ((𝐹‘w)𝑅(𝐺‘w)) = ((𝐺‘w)𝑅(𝐹‘w))) |
8 | 5, 7 | syldan 266 | . . 3 ⊢ ((φ ∧ w ∈ A) → ((𝐹‘w)𝑅(𝐺‘w)) = ((𝐺‘w)𝑅(𝐹‘w))) |
9 | 8 | mpteq2dva 3838 | . 2 ⊢ (φ → (w ∈ A ↦ ((𝐹‘w)𝑅(𝐺‘w))) = (w ∈ A ↦ ((𝐺‘w)𝑅(𝐹‘w)))) |
10 | caofref.1 | . . 3 ⊢ (φ → A ∈ 𝑉) | |
11 | 1 | feqmptd 5169 | . . 3 ⊢ (φ → 𝐹 = (w ∈ A ↦ (𝐹‘w))) |
12 | 3 | feqmptd 5169 | . . 3 ⊢ (φ → 𝐺 = (w ∈ A ↦ (𝐺‘w))) |
13 | 10, 2, 4, 11, 12 | offval2 5668 | . 2 ⊢ (φ → (𝐹 ∘𝑓 𝑅𝐺) = (w ∈ A ↦ ((𝐹‘w)𝑅(𝐺‘w)))) |
14 | 10, 4, 2, 12, 11 | offval2 5668 | . 2 ⊢ (φ → (𝐺 ∘𝑓 𝑅𝐹) = (w ∈ A ↦ ((𝐺‘w)𝑅(𝐹‘w)))) |
15 | 9, 13, 14 | 3eqtr4d 2079 | 1 ⊢ (φ → (𝐹 ∘𝑓 𝑅𝐺) = (𝐺 ∘𝑓 𝑅𝐹)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 = wceq 1242 ∈ wcel 1390 ↦ cmpt 3809 ⟶wf 4841 ‘cfv 4845 (class class class)co 5455 ∘𝑓 cof 5652 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-14 1402 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 ax-coll 3863 ax-sep 3866 ax-pow 3918 ax-pr 3935 ax-setind 4220 |
This theorem depends on definitions: df-bi 110 df-3an 886 df-tru 1245 df-fal 1248 df-nf 1347 df-sb 1643 df-eu 1900 df-mo 1901 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-ne 2203 df-ral 2305 df-rex 2306 df-reu 2307 df-rab 2309 df-v 2553 df-sbc 2759 df-csb 2847 df-dif 2914 df-un 2916 df-in 2918 df-ss 2925 df-pw 3353 df-sn 3373 df-pr 3374 df-op 3376 df-uni 3572 df-iun 3650 df-br 3756 df-opab 3810 df-mpt 3811 df-id 4021 df-xp 4294 df-rel 4295 df-cnv 4296 df-co 4297 df-dm 4298 df-rn 4299 df-res 4300 df-ima 4301 df-iota 4810 df-fun 4847 df-fn 4848 df-f 4849 df-f1 4850 df-fo 4851 df-f1o 4852 df-fv 4853 df-ov 5458 df-oprab 5459 df-mpt2 5460 df-of 5654 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |