ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addgtge0 GIF version

Theorem addgtge0 7445
Description: The sum of nonnegative and positive numbers is positive. (Contributed by NM, 28-Dec-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
addgtge0 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 ≤ 𝐵)) → 0 < (𝐴 + 𝐵))

Proof of Theorem addgtge0
StepHypRef Expression
1 00id 7154 . 2 (0 + 0) = 0
2 0re 7027 . . . 4 0 ∈ ℝ
3 ltleadd 7441 . . . 4 (((0 ∈ ℝ ∧ 0 ∈ ℝ) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → ((0 < 𝐴 ∧ 0 ≤ 𝐵) → (0 + 0) < (𝐴 + 𝐵)))
42, 2, 3mpanl12 412 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 ≤ 𝐵) → (0 + 0) < (𝐴 + 𝐵)))
54imp 115 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 ≤ 𝐵)) → (0 + 0) < (𝐴 + 𝐵))
61, 5syl5eqbrr 3798 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 ≤ 𝐵)) → 0 < (𝐴 + 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wcel 1393   class class class wbr 3764  (class class class)co 5512  cr 6888  0cc0 6889   + caddc 6892   < clt 7060  cle 7061
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-pre-ltwlin 6997  ax-pre-ltadd 7000
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-xp 4351  df-cnv 4353  df-iota 4867  df-fv 4910  df-ov 5515  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066
This theorem is referenced by:  recexaplem2  7633  recp1lt1  7865  resqrexlem1arp  9603  resqrexlemp1rp  9604  resqrexlemglsq  9620
  Copyright terms: Public domain W3C validator