![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 00id | GIF version |
Description: 0 is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
00id | ⊢ (0 + 0) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 7019 | . 2 ⊢ 0 ∈ ℂ | |
2 | addid1 7151 | . 2 ⊢ (0 ∈ ℂ → (0 + 0) = 0) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ (0 + 0) = 0 |
Colors of variables: wff set class |
Syntax hints: = wceq 1243 ∈ wcel 1393 (class class class)co 5512 ℂcc 6887 0cc0 6889 + caddc 6892 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-17 1419 ax-ial 1427 ax-ext 2022 ax-1cn 6977 ax-icn 6979 ax-addcl 6980 ax-mulcl 6982 ax-i2m1 6989 ax-0id 6992 |
This theorem depends on definitions: df-bi 110 df-cleq 2033 df-clel 2036 |
This theorem is referenced by: negdii 7295 addgt0 7443 addgegt0 7444 addgtge0 7445 addge0 7446 add20 7469 recexaplem2 7633 crap0 7910 iap0 8148 10p10e20 8437 iser0 9250 abs00ap 9660 |
Copyright terms: Public domain | W3C validator |