ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negdii GIF version

Theorem negdii 7295
Description: Distribution of negative over addition. (Contributed by NM, 28-Jul-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Hypotheses
Ref Expression
negidi.1 𝐴 ∈ ℂ
pncan3i.2 𝐵 ∈ ℂ
Assertion
Ref Expression
negdii -(𝐴 + 𝐵) = (-𝐴 + -𝐵)

Proof of Theorem negdii
StepHypRef Expression
1 negidi.1 . . . . 5 𝐴 ∈ ℂ
2 pncan3i.2 . . . . 5 𝐵 ∈ ℂ
31, 2addcli 7031 . . . 4 (𝐴 + 𝐵) ∈ ℂ
43negidi 7280 . . 3 ((𝐴 + 𝐵) + -(𝐴 + 𝐵)) = 0
51negidi 7280 . . . . 5 (𝐴 + -𝐴) = 0
62negidi 7280 . . . . 5 (𝐵 + -𝐵) = 0
75, 6oveq12i 5524 . . . 4 ((𝐴 + -𝐴) + (𝐵 + -𝐵)) = (0 + 0)
8 00id 7154 . . . 4 (0 + 0) = 0
97, 8eqtri 2060 . . 3 ((𝐴 + -𝐴) + (𝐵 + -𝐵)) = 0
101negcli 7279 . . . 4 -𝐴 ∈ ℂ
112negcli 7279 . . . 4 -𝐵 ∈ ℂ
121, 10, 2, 11add4i 7176 . . 3 ((𝐴 + -𝐴) + (𝐵 + -𝐵)) = ((𝐴 + 𝐵) + (-𝐴 + -𝐵))
134, 9, 123eqtr2i 2066 . 2 ((𝐴 + 𝐵) + -(𝐴 + 𝐵)) = ((𝐴 + 𝐵) + (-𝐴 + -𝐵))
143negcli 7279 . . 3 -(𝐴 + 𝐵) ∈ ℂ
1510, 11addcli 7031 . . 3 (-𝐴 + -𝐵) ∈ ℂ
163, 14, 15addcani 7193 . 2 (((𝐴 + 𝐵) + -(𝐴 + 𝐵)) = ((𝐴 + 𝐵) + (-𝐴 + -𝐵)) ↔ -(𝐴 + 𝐵) = (-𝐴 + -𝐵))
1713, 16mpbi 133 1 -(𝐴 + 𝐵) = (-𝐴 + -𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1243  wcel 1393  (class class class)co 5512  cc 6887  0cc0 6889   + caddc 6892  -cneg 7183
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-setind 4262  ax-resscn 6976  ax-1cn 6977  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-distr 6988  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-sub 7184  df-neg 7185
This theorem is referenced by:  negsubdii  7296
  Copyright terms: Public domain W3C validator