ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  readdcan GIF version

Theorem readdcan 7153
Description: Cancellation law for addition over the reals. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
readdcan ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + 𝐴) = (𝐶 + 𝐵) ↔ 𝐴 = 𝐵))

Proof of Theorem readdcan
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ax-rnegex 6993 . . . 4 (𝐶 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐶 + 𝑥) = 0)
213ad2ant3 927 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑥 ∈ ℝ (𝐶 + 𝑥) = 0)
3 oveq2 5520 . . . . . . 7 ((𝐶 + 𝐴) = (𝐶 + 𝐵) → (𝑥 + (𝐶 + 𝐴)) = (𝑥 + (𝐶 + 𝐵)))
43adantl 262 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → (𝑥 + (𝐶 + 𝐴)) = (𝑥 + (𝐶 + 𝐵)))
5 simprl 483 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝑥 ∈ ℝ)
65recnd 7054 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝑥 ∈ ℂ)
7 simpl3 909 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝐶 ∈ ℝ)
87recnd 7054 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝐶 ∈ ℂ)
9 simpl1 907 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝐴 ∈ ℝ)
109recnd 7054 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝐴 ∈ ℂ)
116, 8, 10addassd 7049 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → ((𝑥 + 𝐶) + 𝐴) = (𝑥 + (𝐶 + 𝐴)))
12 simpl2 908 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝐵 ∈ ℝ)
1312recnd 7054 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝐵 ∈ ℂ)
146, 8, 13addassd 7049 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → ((𝑥 + 𝐶) + 𝐵) = (𝑥 + (𝐶 + 𝐵)))
1511, 14eqeq12d 2054 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → (((𝑥 + 𝐶) + 𝐴) = ((𝑥 + 𝐶) + 𝐵) ↔ (𝑥 + (𝐶 + 𝐴)) = (𝑥 + (𝐶 + 𝐵))))
1615adantr 261 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → (((𝑥 + 𝐶) + 𝐴) = ((𝑥 + 𝐶) + 𝐵) ↔ (𝑥 + (𝐶 + 𝐴)) = (𝑥 + (𝐶 + 𝐵))))
174, 16mpbird 156 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → ((𝑥 + 𝐶) + 𝐴) = ((𝑥 + 𝐶) + 𝐵))
188adantr 261 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → 𝐶 ∈ ℂ)
196adantr 261 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → 𝑥 ∈ ℂ)
20 addcom 7150 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐶 + 𝑥) = (𝑥 + 𝐶))
2118, 19, 20syl2anc 391 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → (𝐶 + 𝑥) = (𝑥 + 𝐶))
22 simplrr 488 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → (𝐶 + 𝑥) = 0)
2321, 22eqtr3d 2074 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → (𝑥 + 𝐶) = 0)
2423oveq1d 5527 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → ((𝑥 + 𝐶) + 𝐴) = (0 + 𝐴))
2510adantr 261 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → 𝐴 ∈ ℂ)
26 addid2 7152 . . . . . . 7 (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴)
2725, 26syl 14 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → (0 + 𝐴) = 𝐴)
2824, 27eqtrd 2072 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → ((𝑥 + 𝐶) + 𝐴) = 𝐴)
2923oveq1d 5527 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → ((𝑥 + 𝐶) + 𝐵) = (0 + 𝐵))
3013adantr 261 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → 𝐵 ∈ ℂ)
31 addid2 7152 . . . . . . 7 (𝐵 ∈ ℂ → (0 + 𝐵) = 𝐵)
3230, 31syl 14 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → (0 + 𝐵) = 𝐵)
3329, 32eqtrd 2072 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → ((𝑥 + 𝐶) + 𝐵) = 𝐵)
3417, 28, 333eqtr3d 2080 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → 𝐴 = 𝐵)
3534ex 108 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → ((𝐶 + 𝐴) = (𝐶 + 𝐵) → 𝐴 = 𝐵))
362, 35rexlimddv 2437 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + 𝐴) = (𝐶 + 𝐵) → 𝐴 = 𝐵))
37 oveq2 5520 . 2 (𝐴 = 𝐵 → (𝐶 + 𝐴) = (𝐶 + 𝐵))
3836, 37impbid1 130 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + 𝐴) = (𝐶 + 𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  w3a 885   = wceq 1243  wcel 1393  wrex 2307  (class class class)co 5512  cc 6887  cr 6888  0cc0 6889   + caddc 6892
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-resscn 6976  ax-1cn 6977  ax-icn 6979  ax-addcl 6980  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-iota 4867  df-fv 4910  df-ov 5515
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator