ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addid1i GIF version

Theorem addid1i 6952
Description: 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.)
Hypothesis
Ref Expression
mul.1 A
Assertion
Ref Expression
addid1i (A + 0) = A

Proof of Theorem addid1i
StepHypRef Expression
1 mul.1 . 2 A
2 addid1 6948 . 2 (A ℂ → (A + 0) = A)
31, 2ax-mp 7 1 (A + 0) = A
Colors of variables: wff set class
Syntax hints:   = wceq 1242   wcel 1390  (class class class)co 5455  cc 6709  0cc0 6711   + caddc 6714
This theorem was proved from axioms:  ax-mp 7  ax-0id 6791
This theorem is referenced by:  1p0e1  7810  num0u  8152  numnncl2  8160  dec10  8173  decaddi  8187  decaddci  8188
  Copyright terms: Public domain W3C validator