ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foimacnv Unicode version

Theorem foimacnv 5144
Description: A reverse version of f1imacnv 5143. (Contributed by Jeff Hankins, 16-Jul-2009.)
Assertion
Ref Expression
foimacnv  |-  ( ( F : A -onto-> B  /\  C  C_  B )  ->  ( F "
( `' F " C ) )  =  C )

Proof of Theorem foimacnv
StepHypRef Expression
1 resima 4643 . 2  |-  ( ( F  |`  ( `' F " C ) )
" ( `' F " C ) )  =  ( F " ( `' F " C ) )
2 fofun 5107 . . . . . 6  |-  ( F : A -onto-> B  ->  Fun  F )
32adantr 261 . . . . 5  |-  ( ( F : A -onto-> B  /\  C  C_  B )  ->  Fun  F )
4 funcnvres2 4974 . . . . 5  |-  ( Fun 
F  ->  `' ( `' F  |`  C )  =  ( F  |`  ( `' F " C ) ) )
53, 4syl 14 . . . 4  |-  ( ( F : A -onto-> B  /\  C  C_  B )  ->  `' ( `' F  |`  C )  =  ( F  |`  ( `' F " C ) ) )
65imaeq1d 4667 . . 3  |-  ( ( F : A -onto-> B  /\  C  C_  B )  ->  ( `' ( `' F  |`  C )
" ( `' F " C ) )  =  ( ( F  |`  ( `' F " C ) ) " ( `' F " C ) ) )
7 resss 4635 . . . . . . . . . . 11  |-  ( `' F  |`  C )  C_  `' F
8 cnvss 4508 . . . . . . . . . . 11  |-  ( ( `' F  |`  C ) 
C_  `' F  ->  `' ( `' F  |`  C )  C_  `' `' F )
97, 8ax-mp 7 . . . . . . . . . 10  |-  `' ( `' F  |`  C ) 
C_  `' `' F
10 cnvcnvss 4775 . . . . . . . . . 10  |-  `' `' F  C_  F
119, 10sstri 2954 . . . . . . . . 9  |-  `' ( `' F  |`  C ) 
C_  F
12 funss 4920 . . . . . . . . 9  |-  ( `' ( `' F  |`  C )  C_  F  ->  ( Fun  F  ->  Fun  `' ( `' F  |`  C ) ) )
1311, 2, 12mpsyl 59 . . . . . . . 8  |-  ( F : A -onto-> B  ->  Fun  `' ( `' F  |`  C ) )
1413adantr 261 . . . . . . 7  |-  ( ( F : A -onto-> B  /\  C  C_  B )  ->  Fun  `' ( `' F  |`  C ) )
15 df-ima 4358 . . . . . . . 8  |-  ( `' F " C )  =  ran  ( `' F  |`  C )
16 df-rn 4356 . . . . . . . 8  |-  ran  ( `' F  |`  C )  =  dom  `' ( `' F  |`  C )
1715, 16eqtr2i 2061 . . . . . . 7  |-  dom  `' ( `' F  |`  C )  =  ( `' F " C )
1814, 17jctir 296 . . . . . 6  |-  ( ( F : A -onto-> B  /\  C  C_  B )  ->  ( Fun  `' ( `' F  |`  C )  /\  dom  `' ( `' F  |`  C )  =  ( `' F " C ) ) )
19 df-fn 4905 . . . . . 6  |-  ( `' ( `' F  |`  C )  Fn  ( `' F " C )  <-> 
( Fun  `' ( `' F  |`  C )  /\  dom  `' ( `' F  |`  C )  =  ( `' F " C ) ) )
2018, 19sylibr 137 . . . . 5  |-  ( ( F : A -onto-> B  /\  C  C_  B )  ->  `' ( `' F  |`  C )  Fn  ( `' F " C ) )
21 dfdm4 4527 . . . . . 6  |-  dom  ( `' F  |`  C )  =  ran  `' ( `' F  |`  C )
22 forn 5109 . . . . . . . . . 10  |-  ( F : A -onto-> B  ->  ran  F  =  B )
2322sseq2d 2973 . . . . . . . . 9  |-  ( F : A -onto-> B  -> 
( C  C_  ran  F  <-> 
C  C_  B )
)
2423biimpar 281 . . . . . . . 8  |-  ( ( F : A -onto-> B  /\  C  C_  B )  ->  C  C_  ran  F )
25 df-rn 4356 . . . . . . . 8  |-  ran  F  =  dom  `' F
2624, 25syl6sseq 2991 . . . . . . 7  |-  ( ( F : A -onto-> B  /\  C  C_  B )  ->  C  C_  dom  `' F )
27 ssdmres 4633 . . . . . . 7  |-  ( C 
C_  dom  `' F  <->  dom  ( `' F  |`  C )  =  C )
2826, 27sylib 127 . . . . . 6  |-  ( ( F : A -onto-> B  /\  C  C_  B )  ->  dom  ( `' F  |`  C )  =  C )
2921, 28syl5eqr 2086 . . . . 5  |-  ( ( F : A -onto-> B  /\  C  C_  B )  ->  ran  `' ( `' F  |`  C )  =  C )
30 df-fo 4908 . . . . 5  |-  ( `' ( `' F  |`  C ) : ( `' F " C )
-onto-> C  <->  ( `' ( `' F  |`  C )  Fn  ( `' F " C )  /\  ran  `' ( `' F  |`  C )  =  C ) )
3120, 29, 30sylanbrc 394 . . . 4  |-  ( ( F : A -onto-> B  /\  C  C_  B )  ->  `' ( `' F  |`  C ) : ( `' F " C ) -onto-> C )
32 foima 5111 . . . 4  |-  ( `' ( `' F  |`  C ) : ( `' F " C )
-onto-> C  ->  ( `' ( `' F  |`  C )
" ( `' F " C ) )  =  C )
3331, 32syl 14 . . 3  |-  ( ( F : A -onto-> B  /\  C  C_  B )  ->  ( `' ( `' F  |`  C )
" ( `' F " C ) )  =  C )
346, 33eqtr3d 2074 . 2  |-  ( ( F : A -onto-> B  /\  C  C_  B )  ->  ( ( F  |`  ( `' F " C ) ) "
( `' F " C ) )  =  C )
351, 34syl5eqr 2086 1  |-  ( ( F : A -onto-> B  /\  C  C_  B )  ->  ( F "
( `' F " C ) )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    C_ wss 2917   `'ccnv 4344   dom cdm 4345   ran crn 4346    |` cres 4347   "cima 4348   Fun wfun 4896    Fn wfn 4897   -onto->wfo 4900
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-fun 4904  df-fn 4905  df-f 4906  df-fo 4908
This theorem is referenced by:  f1opw2  5706  fopwdom  6310
  Copyright terms: Public domain W3C validator