ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ind-raph GIF version

Theorem nn0ind-raph 8355
Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Raph Levien remarks: "This seems a bit painful. I wonder if an explicit substitution version would be easier." (Contributed by Raph Levien, 10-Apr-2004.)
Hypotheses
Ref Expression
nn0ind-raph.1 (𝑥 = 0 → (𝜑𝜓))
nn0ind-raph.2 (𝑥 = 𝑦 → (𝜑𝜒))
nn0ind-raph.3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
nn0ind-raph.4 (𝑥 = 𝐴 → (𝜑𝜏))
nn0ind-raph.5 𝜓
nn0ind-raph.6 (𝑦 ∈ ℕ0 → (𝜒𝜃))
Assertion
Ref Expression
nn0ind-raph (𝐴 ∈ ℕ0𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem nn0ind-raph
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elnn0 8183 . 2 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
2 dfsbcq2 2767 . . . 4 (𝑧 = 1 → ([𝑧 / 𝑥]𝜑[1 / 𝑥]𝜑))
3 nfv 1421 . . . . 5 𝑥𝜒
4 nn0ind-raph.2 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜒))
53, 4sbhypf 2603 . . . 4 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑𝜒))
6 nfv 1421 . . . . 5 𝑥𝜃
7 nn0ind-raph.3 . . . . 5 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
86, 7sbhypf 2603 . . . 4 (𝑧 = (𝑦 + 1) → ([𝑧 / 𝑥]𝜑𝜃))
9 nfv 1421 . . . . 5 𝑥𝜏
10 nn0ind-raph.4 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜏))
119, 10sbhypf 2603 . . . 4 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑𝜏))
12 nfsbc1v 2782 . . . . 5 𝑥[1 / 𝑥]𝜑
13 1ex 7022 . . . . 5 1 ∈ V
14 c0ex 7021 . . . . . . 7 0 ∈ V
15 0nn0 8196 . . . . . . . . . . . 12 0 ∈ ℕ0
16 eleq1a 2109 . . . . . . . . . . . 12 (0 ∈ ℕ0 → (𝑦 = 0 → 𝑦 ∈ ℕ0))
1715, 16ax-mp 7 . . . . . . . . . . 11 (𝑦 = 0 → 𝑦 ∈ ℕ0)
18 nn0ind-raph.5 . . . . . . . . . . . . . . 15 𝜓
19 nn0ind-raph.1 . . . . . . . . . . . . . . 15 (𝑥 = 0 → (𝜑𝜓))
2018, 19mpbiri 157 . . . . . . . . . . . . . 14 (𝑥 = 0 → 𝜑)
21 eqeq2 2049 . . . . . . . . . . . . . . . 16 (𝑦 = 0 → (𝑥 = 𝑦𝑥 = 0))
2221, 4syl6bir 153 . . . . . . . . . . . . . . 15 (𝑦 = 0 → (𝑥 = 0 → (𝜑𝜒)))
2322pm5.74d 171 . . . . . . . . . . . . . 14 (𝑦 = 0 → ((𝑥 = 0 → 𝜑) ↔ (𝑥 = 0 → 𝜒)))
2420, 23mpbii 136 . . . . . . . . . . . . 13 (𝑦 = 0 → (𝑥 = 0 → 𝜒))
2524com12 27 . . . . . . . . . . . 12 (𝑥 = 0 → (𝑦 = 0 → 𝜒))
2614, 25vtocle 2627 . . . . . . . . . . 11 (𝑦 = 0 → 𝜒)
27 nn0ind-raph.6 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (𝜒𝜃))
2817, 26, 27sylc 56 . . . . . . . . . 10 (𝑦 = 0 → 𝜃)
2928adantr 261 . . . . . . . . 9 ((𝑦 = 0 ∧ 𝑥 = 1) → 𝜃)
30 oveq1 5519 . . . . . . . . . . . . 13 (𝑦 = 0 → (𝑦 + 1) = (0 + 1))
31 0p1e1 8031 . . . . . . . . . . . . 13 (0 + 1) = 1
3230, 31syl6eq 2088 . . . . . . . . . . . 12 (𝑦 = 0 → (𝑦 + 1) = 1)
3332eqeq2d 2051 . . . . . . . . . . 11 (𝑦 = 0 → (𝑥 = (𝑦 + 1) ↔ 𝑥 = 1))
3433, 7syl6bir 153 . . . . . . . . . 10 (𝑦 = 0 → (𝑥 = 1 → (𝜑𝜃)))
3534imp 115 . . . . . . . . 9 ((𝑦 = 0 ∧ 𝑥 = 1) → (𝜑𝜃))
3629, 35mpbird 156 . . . . . . . 8 ((𝑦 = 0 ∧ 𝑥 = 1) → 𝜑)
3736ex 108 . . . . . . 7 (𝑦 = 0 → (𝑥 = 1 → 𝜑))
3814, 37vtocle 2627 . . . . . 6 (𝑥 = 1 → 𝜑)
39 sbceq1a 2773 . . . . . 6 (𝑥 = 1 → (𝜑[1 / 𝑥]𝜑))
4038, 39mpbid 135 . . . . 5 (𝑥 = 1 → [1 / 𝑥]𝜑)
4112, 13, 40vtoclef 2626 . . . 4 [1 / 𝑥]𝜑
42 nnnn0 8188 . . . . 5 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
4342, 27syl 14 . . . 4 (𝑦 ∈ ℕ → (𝜒𝜃))
442, 5, 8, 11, 41, 43nnind 7930 . . 3 (𝐴 ∈ ℕ → 𝜏)
45 nfv 1421 . . . . 5 𝑥(0 = 𝐴𝜏)
46 eqeq1 2046 . . . . . 6 (𝑥 = 0 → (𝑥 = 𝐴 ↔ 0 = 𝐴))
4719bicomd 129 . . . . . . . . 9 (𝑥 = 0 → (𝜓𝜑))
4847, 10sylan9bb 435 . . . . . . . 8 ((𝑥 = 0 ∧ 𝑥 = 𝐴) → (𝜓𝜏))
4918, 48mpbii 136 . . . . . . 7 ((𝑥 = 0 ∧ 𝑥 = 𝐴) → 𝜏)
5049ex 108 . . . . . 6 (𝑥 = 0 → (𝑥 = 𝐴𝜏))
5146, 50sylbird 159 . . . . 5 (𝑥 = 0 → (0 = 𝐴𝜏))
5245, 14, 51vtoclef 2626 . . . 4 (0 = 𝐴𝜏)
5352eqcoms 2043 . . 3 (𝐴 = 0 → 𝜏)
5444, 53jaoi 636 . 2 ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → 𝜏)
551, 54sylbi 114 1 (𝐴 ∈ ℕ0𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  wo 629   = wceq 1243  wcel 1393  [wsb 1645  [wsbc 2764  (class class class)co 5512  0cc0 6889  1c1 6890   + caddc 6892  cn 7914  0cn0 8181
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-i2m1 6989  ax-0id 6992
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-br 3765  df-iota 4867  df-fv 4910  df-ov 5515  df-inn 7915  df-n0 8182
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator