ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbhypf Structured version   GIF version

Theorem sbhypf 2597
Description: Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf . (Contributed by Raph Levien, 10-Apr-2004.)
Hypotheses
Ref Expression
sbhypf.1 xψ
sbhypf.2 (x = A → (φψ))
Assertion
Ref Expression
sbhypf (y = A → ([y / x]φψ))
Distinct variable groups:   x,A   x,y
Allowed substitution hints:   φ(x,y)   ψ(x,y)   A(y)

Proof of Theorem sbhypf
StepHypRef Expression
1 vex 2554 . . 3 y V
2 eqeq1 2043 . . 3 (x = y → (x = Ay = A))
31, 2ceqsexv 2587 . 2 (x(x = y x = A) ↔ y = A)
4 nfs1v 1812 . . . 4 x[y / x]φ
5 sbhypf.1 . . . 4 xψ
64, 5nfbi 1478 . . 3 x([y / x]φψ)
7 sbequ12 1651 . . . . 5 (x = y → (φ ↔ [y / x]φ))
87bicomd 129 . . . 4 (x = y → ([y / x]φφ))
9 sbhypf.2 . . . 4 (x = A → (φψ))
108, 9sylan9bb 435 . . 3 ((x = y x = A) → ([y / x]φψ))
116, 10exlimi 1482 . 2 (x(x = y x = A) → ([y / x]φψ))
123, 11sylbir 125 1 (y = A → ([y / x]φψ))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wb 98   = wceq 1242  wnf 1346  wex 1378  [wsb 1642
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-11 1394  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-v 2553
This theorem is referenced by:  mob2  2715  tfisi  4253  ralxpf  4425  rexxpf  4426  nn0ind-raph  8131
  Copyright terms: Public domain W3C validator