Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  imassrn Structured version   GIF version

Theorem imassrn 4622
 Description: The image of a class is a subset of its range. Theorem 3.16(xi) of [Monk1] p. 39. (Contributed by NM, 31-Mar-1995.)
Assertion
Ref Expression
imassrn (AB) ⊆ ran A

Proof of Theorem imassrn
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exsimpr 1506 . . 3 (x(x B x, y A) → xx, y A)
21ss2abi 3006 . 2 {yx(x B x, y A)} ⊆ {yxx, y A}
3 dfima3 4614 . 2 (AB) = {yx(x B x, y A)}
4 dfrn3 4467 . 2 ran A = {yxx, y A}
52, 3, 43sstr4i 2978 1 (AB) ⊆ ran A
 Colors of variables: wff set class Syntax hints:   ∧ wa 97  ∃wex 1378   ∈ wcel 1390  {cab 2023   ⊆ wss 2911  ⟨cop 3370  ran crn 4289   “ cima 4291 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935 This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-br 3756  df-opab 3810  df-xp 4294  df-cnv 4296  df-dm 4298  df-rn 4299  df-res 4300  df-ima 4301 This theorem is referenced by:  imaexg  4623  0ima  4628  cnvimass  4631  fimacnv  5239  f1opw2  5648  smores2  5850  ecss  6083  f1imaen2g  6209  fopwdom  6246
 Copyright terms: Public domain W3C validator