ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecss GIF version

Theorem ecss 6083
Description: An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
ecss.1 (φ𝑅 Er 𝑋)
Assertion
Ref Expression
ecss (φ → [A]𝑅𝑋)

Proof of Theorem ecss
StepHypRef Expression
1 df-ec 6044 . . 3 [A]𝑅 = (𝑅 “ {A})
2 imassrn 4622 . . 3 (𝑅 “ {A}) ⊆ ran 𝑅
31, 2eqsstri 2969 . 2 [A]𝑅 ⊆ ran 𝑅
4 ecss.1 . . 3 (φ𝑅 Er 𝑋)
5 errn 6064 . . 3 (𝑅 Er 𝑋 → ran 𝑅 = 𝑋)
64, 5syl 14 . 2 (φ → ran 𝑅 = 𝑋)
73, 6syl5sseq 2987 1 (φ → [A]𝑅𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1242  wss 2911  {csn 3367  ran crn 4289  cima 4291   Er wer 6039  [cec 6040
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-br 3756  df-opab 3810  df-xp 4294  df-rel 4295  df-cnv 4296  df-dm 4298  df-rn 4299  df-res 4300  df-ima 4301  df-er 6042  df-ec 6044
This theorem is referenced by:  qsss  6101
  Copyright terms: Public domain W3C validator