ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrn3 Structured version   GIF version

Theorem dfrn3 4467
Description: Alternate definition of range. Definition 6.5(2) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.)
Assertion
Ref Expression
dfrn3 ran A = {yxx, y A}
Distinct variable group:   x,y,A

Proof of Theorem dfrn3
StepHypRef Expression
1 dfrn2 4466 . 2 ran A = {yx xAy}
2 df-br 3756 . . . 4 (xAy ↔ ⟨x, y A)
32exbii 1493 . . 3 (x xAyxx, y A)
43abbii 2150 . 2 {yx xAy} = {yxx, y A}
51, 4eqtri 2057 1 ran A = {yxx, y A}
Colors of variables: wff set class
Syntax hints:   = wceq 1242  wex 1378   wcel 1390  {cab 2023  cop 3370   class class class wbr 3755  ran crn 4289
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-br 3756  df-opab 3810  df-cnv 4296  df-dm 4298  df-rn 4299
This theorem is referenced by:  elrn2g  4468  elrn2  4519  imadmrn  4621  imassrn  4622  csbrng  4725
  Copyright terms: Public domain W3C validator