ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccid GIF version

Theorem iccid 8794
Description: A closed interval with identical lower and upper bounds is a singleton. (Contributed by Jeff Hankins, 13-Jul-2009.)
Assertion
Ref Expression
iccid (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})

Proof of Theorem iccid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elicc1 8793 . . . 4 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥 ∈ (𝐴[,]𝐴) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴)))
21anidms 377 . . 3 (𝐴 ∈ ℝ* → (𝑥 ∈ (𝐴[,]𝐴) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴)))
3 xrlenlt 7084 . . . . . . . 8 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (𝐴𝑥 ↔ ¬ 𝑥 < 𝐴))
4 xrlenlt 7084 . . . . . . . . . . 11 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥𝐴 ↔ ¬ 𝐴 < 𝑥))
54ancoms 255 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑥𝐴 ↔ ¬ 𝐴 < 𝑥))
6 xrlttri3 8718 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥 = 𝐴 ↔ (¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥)))
76biimprd 147 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ*) → ((¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥) → 𝑥 = 𝐴))
87ancoms 255 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → ((¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥) → 𝑥 = 𝐴))
98expcomd 1330 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (¬ 𝐴 < 𝑥 → (¬ 𝑥 < 𝐴𝑥 = 𝐴)))
105, 9sylbid 139 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑥𝐴 → (¬ 𝑥 < 𝐴𝑥 = 𝐴)))
1110com23 72 . . . . . . . 8 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (¬ 𝑥 < 𝐴 → (𝑥𝐴𝑥 = 𝐴)))
123, 11sylbid 139 . . . . . . 7 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (𝐴𝑥 → (𝑥𝐴𝑥 = 𝐴)))
1312ex 108 . . . . . 6 (𝐴 ∈ ℝ* → (𝑥 ∈ ℝ* → (𝐴𝑥 → (𝑥𝐴𝑥 = 𝐴))))
14133impd 1118 . . . . 5 (𝐴 ∈ ℝ* → ((𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴) → 𝑥 = 𝐴))
15 eleq1a 2109 . . . . . 6 (𝐴 ∈ ℝ* → (𝑥 = 𝐴𝑥 ∈ ℝ*))
16 xrleid 8720 . . . . . . 7 (𝐴 ∈ ℝ*𝐴𝐴)
17 breq2 3768 . . . . . . 7 (𝑥 = 𝐴 → (𝐴𝑥𝐴𝐴))
1816, 17syl5ibrcom 146 . . . . . 6 (𝐴 ∈ ℝ* → (𝑥 = 𝐴𝐴𝑥))
19 breq1 3767 . . . . . . 7 (𝑥 = 𝐴 → (𝑥𝐴𝐴𝐴))
2016, 19syl5ibrcom 146 . . . . . 6 (𝐴 ∈ ℝ* → (𝑥 = 𝐴𝑥𝐴))
2115, 18, 203jcad 1085 . . . . 5 (𝐴 ∈ ℝ* → (𝑥 = 𝐴 → (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴)))
2214, 21impbid 120 . . . 4 (𝐴 ∈ ℝ* → ((𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴) ↔ 𝑥 = 𝐴))
23 velsn 3392 . . . 4 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
2422, 23syl6bbr 187 . . 3 (𝐴 ∈ ℝ* → ((𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴) ↔ 𝑥 ∈ {𝐴}))
252, 24bitrd 177 . 2 (𝐴 ∈ ℝ* → (𝑥 ∈ (𝐴[,]𝐴) ↔ 𝑥 ∈ {𝐴}))
2625eqrdv 2038 1 (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 97  wb 98  w3a 885   = wceq 1243  wcel 1393  {csn 3375   class class class wbr 3764  (class class class)co 5512  *cxr 7059   < clt 7060  cle 7061  [,]cicc 8760
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-cnex 6975  ax-resscn 6976  ax-pre-ltirr 6996  ax-pre-apti 6999
This theorem depends on definitions:  df-bi 110  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-icc 8764
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator