ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcomd GIF version

Theorem expcomd 1327
Description: Deduction form of expcom 109. (Contributed by Alan Sare, 22-Jul-2012.)
Hypothesis
Ref Expression
expcomd.1 (φ → ((ψ χ) → θ))
Assertion
Ref Expression
expcomd (φ → (χ → (ψθ)))

Proof of Theorem expcomd
StepHypRef Expression
1 expcomd.1 . . 3 (φ → ((ψ χ) → θ))
21expd 245 . 2 (φ → (ψ → (χθ)))
32com23 72 1 (φ → (χ → (ψθ)))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia3 101
This theorem is referenced by:  simplbi2comg  1329  2moswapdc  1987  indifdir  3187  reupick  3215  trintssm  3861  issod  4047  poxp  5794  smores2  5850  smoiun  5857  recexprlemm  6596  ltleletr  6897  fzind  8129  iccid  8564  ssfzo12bi  8851
  Copyright terms: Public domain W3C validator