ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcomd GIF version

Theorem expcomd 1330
Description: Deduction form of expcom 109. (Contributed by Alan Sare, 22-Jul-2012.)
Hypothesis
Ref Expression
expcomd.1 (𝜑 → ((𝜓𝜒) → 𝜃))
Assertion
Ref Expression
expcomd (𝜑 → (𝜒 → (𝜓𝜃)))

Proof of Theorem expcomd
StepHypRef Expression
1 expcomd.1 . . 3 (𝜑 → ((𝜓𝜒) → 𝜃))
21expd 245 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
32com23 72 1 (𝜑 → (𝜒 → (𝜓𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia3 101
This theorem is referenced by:  simplbi2comg  1332  2moswapdc  1990  indifdir  3193  reupick  3221  trintssm  3870  issod  4056  poxp  5853  smores2  5909  smoiun  5916  recexprlemm  6720  ltleletr  7098  fzind  8351  iccid  8792  ssfzo12bi  9079
  Copyright terms: Public domain W3C validator