ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simplbi2comg GIF version

Theorem simplbi2comg 1329
Description: Implication form of simplbi2com 1330. (Contributed by Alan Sare, 22-Jul-2012.)
Assertion
Ref Expression
simplbi2comg ((φ ↔ (ψ χ)) → (χ → (ψφ)))

Proof of Theorem simplbi2comg
StepHypRef Expression
1 bi2 121 . 2 ((φ ↔ (ψ χ)) → ((ψ χ) → φ))
21expcomd 1327 1 ((φ ↔ (ψ χ)) → (χ → (ψφ)))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wb 98
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator