ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnvres2 GIF version

Theorem funcnvres2 4974
Description: The converse of a restriction of the converse of a function equals the function restricted to the image of its converse. (Contributed by NM, 4-May-2005.)
Assertion
Ref Expression
funcnvres2 (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))

Proof of Theorem funcnvres2
StepHypRef Expression
1 funcnvcnv 4958 . . 3 (Fun 𝐹 → Fun 𝐹)
2 funcnvres 4972 . . 3 (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))
31, 2syl 14 . 2 (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))
4 funrel 4919 . . . 4 (Fun 𝐹 → Rel 𝐹)
5 dfrel2 4771 . . . 4 (Rel 𝐹𝐹 = 𝐹)
64, 5sylib 127 . . 3 (Fun 𝐹𝐹 = 𝐹)
76reseq1d 4611 . 2 (Fun 𝐹 → (𝐹 ↾ (𝐹𝐴)) = (𝐹 ↾ (𝐹𝐴)))
83, 7eqtrd 2072 1 (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1243  ccnv 4344  cres 4347  cima 4348  Rel wrel 4350  Fun wfun 4896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-fun 4904
This theorem is referenced by:  funimacnv  4975  foimacnv  5144
  Copyright terms: Public domain W3C validator