Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq1d Structured version   GIF version

Theorem reseq1d 4554
 Description: Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.)
Hypothesis
Ref Expression
reseqd.1 (φA = B)
Assertion
Ref Expression
reseq1d (φ → (A𝐶) = (B𝐶))

Proof of Theorem reseq1d
StepHypRef Expression
1 reseqd.1 . 2 (φA = B)
2 reseq1 4549 . 2 (A = B → (A𝐶) = (B𝐶))
31, 2syl 14 1 (φ → (A𝐶) = (B𝐶))
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1242   ↾ cres 4290 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019 This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-in 2918  df-res 4300 This theorem is referenced by:  reseq12d  4556  fun2ssres  4886  funcnvres2  4917  funimaexg  4926  fresin  5011  offres  5704  tfrlemisucaccv  5880  tfrlemi1  5887  freceq1  5919  freceq2  5920  fseq1p1m1  8726
 Copyright terms: Public domain W3C validator