ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrel2 GIF version

Theorem dfrel2 4771
Description: Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
dfrel2 (Rel 𝑅𝑅 = 𝑅)

Proof of Theorem dfrel2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 4703 . . 3 Rel 𝑅
2 vex 2560 . . . . . 6 𝑥 ∈ V
3 vex 2560 . . . . . 6 𝑦 ∈ V
42, 3opelcnv 4517 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝑅 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝑅)
53, 2opelcnv 4517 . . . . 5 (⟨𝑦, 𝑥⟩ ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
64, 5bitri 173 . . . 4 (⟨𝑥, 𝑦⟩ ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
76eqrelriv 4433 . . 3 ((Rel 𝑅 ∧ Rel 𝑅) → 𝑅 = 𝑅)
81, 7mpan 400 . 2 (Rel 𝑅𝑅 = 𝑅)
9 releq 4422 . . 3 (𝑅 = 𝑅 → (Rel 𝑅 ↔ Rel 𝑅))
101, 9mpbii 136 . 2 (𝑅 = 𝑅 → Rel 𝑅)
118, 10impbii 117 1 (Rel 𝑅𝑅 = 𝑅)
Colors of variables: wff set class
Syntax hints:  wb 98   = wceq 1243  wcel 1393  cop 3378  ccnv 4344  Rel wrel 4350
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351  df-rel 4352  df-cnv 4353
This theorem is referenced by:  dfrel4v  4772  cnvcnv  4773  cnveqb  4776  dfrel3  4778  cnvcnvres  4784  cnvsn  4803  cores2  4833  co01  4835  coi2  4837  relcnvtr  4840  relcnvexb  4857  funcnvres2  4974  f1cnvcnv  5100  f1ocnv  5139  f1ocnvb  5140  f1ococnv1  5155  isores1  5454  cnvf1o  5846  tposf12  5884
  Copyright terms: Public domain W3C validator