ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foelrn Structured version   GIF version

Theorem foelrn 5238
Description: Property of a surjective function. (Contributed by Jeff Madsen, 4-Jan-2011.)
Assertion
Ref Expression
foelrn ((𝐹:AontoB 𝐶 B) → x A 𝐶 = (𝐹x))
Distinct variable groups:   x,𝐹   x,A   x,B   x,𝐶

Proof of Theorem foelrn
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 dffo3 5235 . . 3 (𝐹:AontoB ↔ (𝐹:AB y B x A y = (𝐹x)))
21simprbi 260 . 2 (𝐹:AontoBy B x A y = (𝐹x))
3 eqeq1 2024 . . . 4 (y = 𝐶 → (y = (𝐹x) ↔ 𝐶 = (𝐹x)))
43rexbidv 2301 . . 3 (y = 𝐶 → (x A y = (𝐹x) ↔ x A 𝐶 = (𝐹x)))
54rspccva 2628 . 2 ((y B x A y = (𝐹x) 𝐶 B) → x A 𝐶 = (𝐹x))
62, 5sylan 267 1 ((𝐹:AontoB 𝐶 B) → x A 𝐶 = (𝐹x))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97   = wceq 1226   wcel 1370  wral 2280  wrex 2281  wf 4821  ontowfo 4823  cfv 4825
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1312  ax-7 1313  ax-gen 1314  ax-ie1 1359  ax-ie2 1360  ax-8 1372  ax-10 1373  ax-11 1374  ax-i12 1375  ax-bnd 1376  ax-4 1377  ax-14 1382  ax-17 1396  ax-i9 1400  ax-ial 1405  ax-i5r 1406  ax-ext 2000  ax-sep 3845  ax-pow 3897  ax-pr 3914
This theorem depends on definitions:  df-bi 110  df-3an 873  df-tru 1229  df-nf 1326  df-sb 1624  df-eu 1881  df-mo 1882  df-clab 2005  df-cleq 2011  df-clel 2014  df-nfc 2145  df-ral 2285  df-rex 2286  df-v 2533  df-sbc 2738  df-un 2895  df-in 2897  df-ss 2904  df-pw 3332  df-sn 3352  df-pr 3353  df-op 3355  df-uni 3551  df-br 3735  df-opab 3789  df-mpt 3790  df-id 4000  df-xp 4274  df-rel 4275  df-cnv 4276  df-co 4277  df-dm 4278  df-rn 4279  df-iota 4790  df-fun 4827  df-fn 4828  df-f 4829  df-fo 4831  df-fv 4833
This theorem is referenced by:  foco2  5239
  Copyright terms: Public domain W3C validator