Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltpiord | Unicode version |
Description: Positive integer 'less than' in terms of ordinal membership. (Contributed by NM, 6-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
ltpiord |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lti 6405 | . . 3 | |
2 | 1 | breqi 3770 | . 2 |
3 | brinxp 4408 | . . 3 | |
4 | epelg 4027 | . . . 4 | |
5 | 4 | adantl 262 | . . 3 |
6 | 3, 5 | bitr3d 179 | . 2 |
7 | 2, 6 | syl5bb 181 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wb 98 wcel 1393 cin 2916 class class class wbr 3764 cep 4024 cxp 4343 cnpi 6370 clti 6373 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 df-eprel 4026 df-xp 4351 df-lti 6405 |
This theorem is referenced by: ltsopi 6418 pitric 6419 pitri3or 6420 ltdcpi 6421 ltexpi 6435 ltapig 6436 ltmpig 6437 1lt2pi 6438 nlt1pig 6439 archnqq 6515 prarloclemarch2 6517 prarloclemlt 6591 prarloclemn 6597 |
Copyright terms: Public domain | W3C validator |