ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  archnqq Unicode version

Theorem archnqq 6487
Description: For any fraction, there is an integer that is greater than it. This is also known as the "archimedean property". (Contributed by Jim Kingdon, 1-Dec-2019.)
Assertion
Ref Expression
archnqq  |-  ( A  e.  Q.  ->  E. x  e.  N.  A  <Q  [ <. x ,  1o >. ]  ~Q  )
Distinct variable group:    x, A

Proof of Theorem archnqq
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqpi 6448 . 2  |-  ( A  e.  Q.  ->  E. z E. w ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  ) )
2 1pi 6385 . . . . . . 7  |-  1o  e.  N.
3 addclpi 6397 . . . . . . 7  |-  ( ( z  e.  N.  /\  1o  e.  N. )  -> 
( z  +N  1o )  e.  N. )
42, 3mpan2 401 . . . . . 6  |-  ( z  e.  N.  ->  (
z  +N  1o )  e.  N. )
54adantr 261 . . . . 5  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  +N  1o )  e.  N. )
65adantr 261 . . . 4  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  ->  (
z  +N  1o )  e.  N. )
7 pinn 6379 . . . . . . . . . . . . . 14  |-  ( z  e.  N.  ->  z  e.  om )
8 1onn 6071 . . . . . . . . . . . . . 14  |-  1o  e.  om
9 nnacl 6037 . . . . . . . . . . . . . 14  |-  ( ( z  e.  om  /\  1o  e.  om )  -> 
( z  +o  1o )  e.  om )
107, 8, 9sylancl 392 . . . . . . . . . . . . 13  |-  ( z  e.  N.  ->  (
z  +o  1o )  e.  om )
1110adantr 261 . . . . . . . . . . . 12  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  +o  1o )  e.  om )
12 nnm1 6075 . . . . . . . . . . . 12  |-  ( ( z  +o  1o )  e.  om  ->  (
( z  +o  1o )  .o  1o )  =  ( z  +o  1o ) )
1311, 12syl 14 . . . . . . . . . . 11  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( ( z  +o  1o )  .o  1o )  =  ( z  +o  1o ) )
14 elni2 6384 . . . . . . . . . . . . . 14  |-  ( w  e.  N.  <->  ( w  e.  om  /\  (/)  e.  w
) )
15 nnord 4312 . . . . . . . . . . . . . . 15  |-  ( w  e.  om  ->  Ord  w )
16 ordgt0ge1 5996 . . . . . . . . . . . . . . . 16  |-  ( Ord  w  ->  ( (/)  e.  w  <->  1o  C_  w ) )
1716biimpa 280 . . . . . . . . . . . . . . 15  |-  ( ( Ord  w  /\  (/)  e.  w
)  ->  1o  C_  w
)
1815, 17sylan 267 . . . . . . . . . . . . . 14  |-  ( ( w  e.  om  /\  (/) 
e.  w )  ->  1o  C_  w )
1914, 18sylbi 114 . . . . . . . . . . . . 13  |-  ( w  e.  N.  ->  1o  C_  w )
2019adantl 262 . . . . . . . . . . . 12  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  1o  C_  w )
21 pinn 6379 . . . . . . . . . . . . . 14  |-  ( w  e.  N.  ->  w  e.  om )
2221adantl 262 . . . . . . . . . . . . 13  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  w  e.  om )
23 nnaword1 6064 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  om  /\  1o  e.  om )  -> 
z  C_  ( z  +o  1o ) )
247, 8, 23sylancl 392 . . . . . . . . . . . . . . 15  |-  ( z  e.  N.  ->  z  C_  ( z  +o  1o ) )
25 elni2 6384 . . . . . . . . . . . . . . . 16  |-  ( z  e.  N.  <->  ( z  e.  om  /\  (/)  e.  z ) )
2625simprbi 260 . . . . . . . . . . . . . . 15  |-  ( z  e.  N.  ->  (/)  e.  z )
2724, 26sseldd 2943 . . . . . . . . . . . . . 14  |-  ( z  e.  N.  ->  (/)  e.  ( z  +o  1o ) )
2827adantr 261 . . . . . . . . . . . . 13  |-  ( ( z  e.  N.  /\  w  e.  N. )  -> 
(/)  e.  ( z  +o  1o ) )
29 nnmword 6069 . . . . . . . . . . . . . 14  |-  ( ( ( 1o  e.  om  /\  w  e.  om  /\  ( z  +o  1o )  e.  om )  /\  (/)  e.  ( z  +o  1o ) )  ->  ( 1o  C_  w 
<->  ( ( z  +o  1o )  .o  1o )  C_  ( ( z  +o  1o )  .o  w ) ) )
308, 29mp3anl1 1226 . . . . . . . . . . . . 13  |-  ( ( ( w  e.  om  /\  ( z  +o  1o )  e.  om )  /\  (/)  e.  ( z  +o  1o ) )  ->  ( 1o  C_  w 
<->  ( ( z  +o  1o )  .o  1o )  C_  ( ( z  +o  1o )  .o  w ) ) )
3122, 11, 28, 30syl21anc 1134 . . . . . . . . . . . 12  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( 1o  C_  w  <->  ( ( z  +o  1o )  .o  1o )  C_  ( ( z  +o  1o )  .o  w
) ) )
3220, 31mpbid 135 . . . . . . . . . . 11  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( ( z  +o  1o )  .o  1o )  C_  ( ( z  +o  1o )  .o  w ) )
3313, 32eqsstr3d 2977 . . . . . . . . . 10  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  +o  1o )  C_  ( ( z  +o  1o )  .o  w ) )
34 nna0 6031 . . . . . . . . . . . . 13  |-  ( z  e.  om  ->  (
z  +o  (/) )  =  z )
35 0lt1o 6001 . . . . . . . . . . . . . 14  |-  (/)  e.  1o
36 nnaordi 6059 . . . . . . . . . . . . . . 15  |-  ( ( 1o  e.  om  /\  z  e.  om )  ->  ( (/)  e.  1o  ->  ( z  +o  (/) )  e.  ( z  +o  1o ) ) )
378, 36mpan 400 . . . . . . . . . . . . . 14  |-  ( z  e.  om  ->  ( (/) 
e.  1o  ->  ( z  +o  (/) )  e.  ( z  +o  1o ) ) )
3835, 37mpi 15 . . . . . . . . . . . . 13  |-  ( z  e.  om  ->  (
z  +o  (/) )  e.  ( z  +o  1o ) )
3934, 38eqeltrrd 2115 . . . . . . . . . . . 12  |-  ( z  e.  om  ->  z  e.  ( z  +o  1o ) )
407, 39syl 14 . . . . . . . . . . 11  |-  ( z  e.  N.  ->  z  e.  ( z  +o  1o ) )
4140adantr 261 . . . . . . . . . 10  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  z  e.  ( z  +o  1o ) )
4233, 41sseldd 2943 . . . . . . . . 9  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  z  e.  ( ( z  +o  1o )  .o  w ) )
43 mulclpi 6398 . . . . . . . . . . . 12  |-  ( ( ( z  +N  1o )  e.  N.  /\  w  e.  N. )  ->  (
( z  +N  1o )  .N  w )  e. 
N. )
444, 43sylan 267 . . . . . . . . . . 11  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( ( z  +N  1o )  .N  w
)  e.  N. )
45 ltpiord 6389 . . . . . . . . . . 11  |-  ( ( z  e.  N.  /\  ( ( z  +N  1o )  .N  w
)  e.  N. )  ->  ( z  <N  (
( z  +N  1o )  .N  w )  <->  z  e.  ( ( z  +N  1o )  .N  w
) ) )
4644, 45syldan 266 . . . . . . . . . 10  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  <N  (
( z  +N  1o )  .N  w )  <->  z  e.  ( ( z  +N  1o )  .N  w
) ) )
47 mulpiord 6387 . . . . . . . . . . . . 13  |-  ( ( ( z  +N  1o )  e.  N.  /\  w  e.  N. )  ->  (
( z  +N  1o )  .N  w )  =  ( ( z  +N  1o )  .o  w
) )
484, 47sylan 267 . . . . . . . . . . . 12  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( ( z  +N  1o )  .N  w
)  =  ( ( z  +N  1o )  .o  w ) )
49 addpiord 6386 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  N.  /\  1o  e.  N. )  -> 
( z  +N  1o )  =  ( z  +o  1o ) )
502, 49mpan2 401 . . . . . . . . . . . . . 14  |-  ( z  e.  N.  ->  (
z  +N  1o )  =  ( z  +o  1o ) )
5150adantr 261 . . . . . . . . . . . . 13  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  +N  1o )  =  ( z  +o  1o ) )
5251oveq1d 5505 . . . . . . . . . . . 12  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( ( z  +N  1o )  .o  w
)  =  ( ( z  +o  1o )  .o  w ) )
5348, 52eqtrd 2072 . . . . . . . . . . 11  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( ( z  +N  1o )  .N  w
)  =  ( ( z  +o  1o )  .o  w ) )
5453eleq2d 2107 . . . . . . . . . 10  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  e.  ( ( z  +N  1o )  .N  w )  <->  z  e.  ( ( z  +o  1o )  .o  w
) ) )
5546, 54bitrd 177 . . . . . . . . 9  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  <N  (
( z  +N  1o )  .N  w )  <->  z  e.  ( ( z  +o  1o )  .o  w
) ) )
5642, 55mpbird 156 . . . . . . . 8  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  z  <N  ( (
z  +N  1o )  .N  w ) )
57 mulcompig 6401 . . . . . . . . . 10  |-  ( ( ( z  +N  1o )  e.  N.  /\  w  e.  N. )  ->  (
( z  +N  1o )  .N  w )  =  ( w  .N  (
z  +N  1o ) ) )
584, 57sylan 267 . . . . . . . . 9  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( ( z  +N  1o )  .N  w
)  =  ( w  .N  ( z  +N  1o ) ) )
5958breq2d 3773 . . . . . . . 8  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  <N  (
( z  +N  1o )  .N  w )  <->  z  <N  ( w  .N  ( z  +N  1o ) ) ) )
6056, 59mpbid 135 . . . . . . 7  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  z  <N  ( w  .N  ( z  +N  1o ) ) )
615, 2jctir 296 . . . . . . . . 9  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( ( z  +N  1o )  e.  N.  /\  1o  e.  N. )
)
62 ordpipqqs 6444 . . . . . . . . 9  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( ( z  +N  1o )  e.  N.  /\  1o  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  <Q  [ <. (
z  +N  1o ) ,  1o >. ]  ~Q  <->  ( z  .N  1o ) 
<N  ( w  .N  (
z  +N  1o ) ) ) )
6361, 62mpdan 398 . . . . . . . 8  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( [ <. z ,  w >. ]  ~Q  <Q  [
<. ( z  +N  1o ) ,  1o >. ]  ~Q  <->  ( z  .N  1o ) 
<N  ( w  .N  (
z  +N  1o ) ) ) )
64 mulidpi 6388 . . . . . . . . . 10  |-  ( z  e.  N.  ->  (
z  .N  1o )  =  z )
6564adantr 261 . . . . . . . . 9  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  .N  1o )  =  z )
6665breq1d 3771 . . . . . . . 8  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( ( z  .N  1o )  <N  (
w  .N  ( z  +N  1o ) )  <-> 
z  <N  ( w  .N  ( z  +N  1o ) ) ) )
6763, 66bitrd 177 . . . . . . 7  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( [ <. z ,  w >. ]  ~Q  <Q  [
<. ( z  +N  1o ) ,  1o >. ]  ~Q  <->  z 
<N  ( w  .N  (
z  +N  1o ) ) ) )
6860, 67mpbird 156 . . . . . 6  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  [ <. z ,  w >. ]  ~Q  <Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  )
6968adantr 261 . . . . 5  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  ->  [ <. z ,  w >. ]  ~Q  <Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  )
70 breq1 3764 . . . . . 6  |-  ( A  =  [ <. z ,  w >. ]  ~Q  ->  ( A  <Q  [ <. (
z  +N  1o ) ,  1o >. ]  ~Q  <->  [
<. z ,  w >. ]  ~Q  <Q  [ <. (
z  +N  1o ) ,  1o >. ]  ~Q  ) )
7170adantl 262 . . . . 5  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  ->  ( A  <Q  [ <. (
z  +N  1o ) ,  1o >. ]  ~Q  <->  [
<. z ,  w >. ]  ~Q  <Q  [ <. (
z  +N  1o ) ,  1o >. ]  ~Q  ) )
7269, 71mpbird 156 . . . 4  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  ->  A  <Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  )
73 opeq1 3546 . . . . . . 7  |-  ( x  =  ( z  +N  1o )  ->  <. x ,  1o >.  =  <. ( z  +N  1o ) ,  1o >. )
7473eceq1d 6120 . . . . . 6  |-  ( x  =  ( z  +N  1o )  ->  [ <. x ,  1o >. ]  ~Q  =  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  )
7574breq2d 3773 . . . . 5  |-  ( x  =  ( z  +N  1o )  ->  ( A  <Q  [ <. x ,  1o >. ]  ~Q  <->  A  <Q  [
<. ( z  +N  1o ) ,  1o >. ]  ~Q  ) )
7675rspcev 2653 . . . 4  |-  ( ( ( z  +N  1o )  e.  N.  /\  A  <Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  )  ->  E. x  e.  N.  A  <Q  [ <. x ,  1o >. ]  ~Q  )
776, 72, 76syl2anc 391 . . 3  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  ->  E. x  e.  N.  A  <Q  [ <. x ,  1o >. ]  ~Q  )
7877exlimivv 1776 . 2  |-  ( E. z E. w ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  ->  E. x  e.  N.  A  <Q  [ <. x ,  1o >. ]  ~Q  )
791, 78syl 14 1  |-  ( A  e.  Q.  ->  E. x  e.  N.  A  <Q  [ <. x ,  1o >. ]  ~Q  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243   E.wex 1381    e. wcel 1393   E.wrex 2304    C_ wss 2914   (/)c0 3221   <.cop 3375   class class class wbr 3761   Ord word 4086   omcom 4291  (class class class)co 5490   1oc1o 5972    +o coa 5976    .o comu 5977   [cec 6082   N.cnpi 6342    +N cpli 6343    .N cmi 6344    <N clti 6345    ~Q ceq 6349   Q.cnq 6350    <Q cltq 6355
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3869  ax-sep 3872  ax-nul 3880  ax-pow 3924  ax-pr 3941  ax-un 4157  ax-setind 4247  ax-iinf 4289
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2308  df-rex 2309  df-reu 2310  df-rab 2312  df-v 2556  df-sbc 2762  df-csb 2850  df-dif 2917  df-un 2919  df-in 2921  df-ss 2928  df-nul 3222  df-pw 3358  df-sn 3378  df-pr 3379  df-op 3381  df-uni 3578  df-int 3613  df-iun 3656  df-br 3762  df-opab 3816  df-mpt 3817  df-tr 3852  df-eprel 4023  df-id 4027  df-iord 4090  df-on 4092  df-suc 4095  df-iom 4292  df-xp 4329  df-rel 4330  df-cnv 4331  df-co 4332  df-dm 4333  df-rn 4334  df-res 4335  df-ima 4336  df-iota 4845  df-fun 4882  df-fn 4883  df-f 4884  df-f1 4885  df-fo 4886  df-f1o 4887  df-fv 4888  df-ov 5493  df-oprab 5494  df-mpt2 5495  df-1st 5745  df-2nd 5746  df-recs 5898  df-irdg 5935  df-1o 5979  df-oadd 5983  df-omul 5984  df-er 6084  df-ec 6086  df-qs 6090  df-ni 6374  df-pli 6375  df-mi 6376  df-lti 6377  df-enq 6417  df-nqqs 6418  df-ltnqqs 6423
This theorem is referenced by:  prarloclemarch  6488  nqprm  6612  archpr  6713  archrecnq  6733
  Copyright terms: Public domain W3C validator