ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elicc2 Unicode version

Theorem elicc2 8807
Description: Membership in a closed real interval. (Contributed by Paul Chapman, 21-Sep-2007.) (Revised by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
elicc2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,] B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <_  B ) ) )

Proof of Theorem elicc2
StepHypRef Expression
1 rexr 7071 . . 3  |-  ( A  e.  RR  ->  A  e.  RR* )
2 rexr 7071 . . 3  |-  ( B  e.  RR  ->  B  e.  RR* )
3 elicc1 8793 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,] B )  <->  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B
) ) )
41, 2, 3syl2an 273 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,] B )  <-> 
( C  e.  RR*  /\  A  <_  C  /\  C  <_  B ) ) )
5 mnfxr 8694 . . . . . . . 8  |- -oo  e.  RR*
65a1i 9 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  -> -oo  e.  RR* )
71ad2antrr 457 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  A  e.  RR* )
8 simpr1 910 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  C  e.  RR* )
9 mnflt 8704 . . . . . . . 8  |-  ( A  e.  RR  -> -oo  <  A )
109ad2antrr 457 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  -> -oo  <  A )
11 simpr2 911 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  A  <_  C )
126, 7, 8, 10, 11xrltletrd 8727 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  -> -oo  <  C )
132ad2antlr 458 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  B  e.  RR* )
14 pnfxr 8692 . . . . . . . 8  |- +oo  e.  RR*
1514a1i 9 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  -> +oo  e.  RR* )
16 simpr3 912 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  C  <_  B )
17 ltpnf 8702 . . . . . . . 8  |-  ( B  e.  RR  ->  B  < +oo )
1817ad2antlr 458 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  B  < +oo )
198, 13, 15, 16, 18xrlelttrd 8726 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  C  < +oo )
20 xrrebnd 8732 . . . . . . 7  |-  ( C  e.  RR*  ->  ( C  e.  RR  <->  ( -oo  <  C  /\  C  < +oo ) ) )
218, 20syl 14 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  ( C  e.  RR  <->  ( -oo  <  C  /\  C  < +oo ) ) )
2212, 19, 21mpbir2and 851 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  C  e.  RR )
2322, 11, 163jca 1084 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  ( C  e.  RR  /\  A  <_  C  /\  C  <_  B ) )
2423ex 108 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
)  ->  ( C  e.  RR  /\  A  <_  C  /\  C  <_  B
) ) )
25 rexr 7071 . . . 4  |-  ( C  e.  RR  ->  C  e.  RR* )
26253anim1i 1090 . . 3  |-  ( ( C  e.  RR  /\  A  <_  C  /\  C  <_  B )  ->  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B ) )
2724, 26impbid1 130 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
)  <->  ( C  e.  RR  /\  A  <_  C  /\  C  <_  B
) ) )
284, 27bitrd 177 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,] B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <_  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    /\ w3a 885    e. wcel 1393   class class class wbr 3764  (class class class)co 5512   RRcr 6888   +oocpnf 7057   -oocmnf 7058   RR*cxr 7059    < clt 7060    <_ cle 7061   [,]cicc 8760
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-cnex 6975  ax-resscn 6976  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998
This theorem depends on definitions:  df-bi 110  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-po 4033  df-iso 4034  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-icc 8764
This theorem is referenced by:  elicc2i  8808  iccssre  8824  iccsupr  8835  iccneg  8857  iccshftr  8862  iccshftl  8864  iccdil  8866  icccntr  8868  iccf1o  8872
  Copyright terms: Public domain W3C validator