ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elicc2i Unicode version

Theorem elicc2i 8808
Description: Inference for membership in a closed interval. (Contributed by Scott Fenton, 3-Jun-2013.)
Hypotheses
Ref Expression
elicc2i.1  |-  A  e.  RR
elicc2i.2  |-  B  e.  RR
Assertion
Ref Expression
elicc2i  |-  ( C  e.  ( A [,] B )  <->  ( C  e.  RR  /\  A  <_  C  /\  C  <_  B
) )

Proof of Theorem elicc2i
StepHypRef Expression
1 elicc2i.1 . 2  |-  A  e.  RR
2 elicc2i.2 . 2  |-  B  e.  RR
3 elicc2 8807 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,] B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <_  B ) ) )
41, 2, 3mp2an 402 1  |-  ( C  e.  ( A [,] B )  <->  ( C  e.  RR  /\  A  <_  C  /\  C  <_  B
) )
Colors of variables: wff set class
Syntax hints:    <-> wb 98    /\ w3a 885    e. wcel 1393   class class class wbr 3764  (class class class)co 5512   RRcr 6888    <_ cle 7061   [,]cicc 8760
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-cnex 6975  ax-resscn 6976  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998
This theorem depends on definitions:  df-bi 110  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-po 4033  df-iso 4034  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-icc 8764
This theorem is referenced by:  0elunit  8854  1elunit  8855  divelunit  8870  lincmb01cmp  8871  iccf1o  8872
  Copyright terms: Public domain W3C validator