Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elicc2i | Unicode version |
Description: Inference for membership in a closed interval. (Contributed by Scott Fenton, 3-Jun-2013.) |
Ref | Expression |
---|---|
elicc2i.1 | |
elicc2i.2 |
Ref | Expression |
---|---|
elicc2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicc2i.1 | . 2 | |
2 | elicc2i.2 | . 2 | |
3 | elicc2 8807 | . 2 | |
4 | 1, 2, 3 | mp2an 402 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 98 w3a 885 wcel 1393 class class class wbr 3764 (class class class)co 5512 cr 6888 cle 7061 cicc 8760 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-un 4170 ax-setind 4262 ax-cnex 6975 ax-resscn 6976 ax-pre-ltirr 6996 ax-pre-ltwlin 6997 ax-pre-lttrn 6998 |
This theorem depends on definitions: df-bi 110 df-3or 886 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-nel 2207 df-ral 2311 df-rex 2312 df-rab 2315 df-v 2559 df-sbc 2765 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-id 4030 df-po 4033 df-iso 4034 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-iota 4867 df-fun 4904 df-fv 4910 df-ov 5515 df-oprab 5516 df-mpt2 5517 df-pnf 7062 df-mnf 7063 df-xr 7064 df-ltxr 7065 df-le 7066 df-icc 8764 |
This theorem is referenced by: 0elunit 8854 1elunit 8855 divelunit 8870 lincmb01cmp 8871 iccf1o 8872 |
Copyright terms: Public domain | W3C validator |