Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccsupr Unicode version

Theorem iccsupr 8835
 Description: A nonempty subset of a closed real interval satisfies the conditions for the existence of its supremum. To be useful without excluded middle, we'll probably need to change not equal to apart, and perhaps make other changes, but the theorem does hold as stated here. (Contributed by Paul Chapman, 21-Jan-2008.)
Assertion
Ref Expression
iccsupr
Distinct variable groups:   ,   ,,   ,,
Allowed substitution hints:   ()   (,)

Proof of Theorem iccsupr
StepHypRef Expression
1 iccssre 8824 . . . 4
2 sstr 2953 . . . . 5
32ancoms 255 . . . 4
41, 3sylan 267 . . 3
543adant3 924 . 2
6 ne0i 3230 . . 3
763ad2ant3 927 . 2
8 simplr 482 . . . 4
9 ssel 2939 . . . . . . . 8
10 elicc2 8807 . . . . . . . . 9
1110biimpd 132 . . . . . . . 8
129, 11sylan9r 390 . . . . . . 7
1312imp 115 . . . . . 6
1413simp3d 918 . . . . 5
1514ralrimiva 2392 . . . 4
16 breq2 3768 . . . . . 6
1716ralbidv 2326 . . . . 5
1817rspcev 2656 . . . 4
198, 15, 18syl2anc 391 . . 3
20193adant3 924 . 2
215, 7, 203jca 1084 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97   w3a 885   wceq 1243   wcel 1393   wne 2204  wral 2306  wrex 2307   wss 2917  c0 3224   class class class wbr 3764  (class class class)co 5512  cr 6888   cle 7061  cicc 8760 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-cnex 6975  ax-resscn 6976  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998 This theorem depends on definitions:  df-bi 110  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-po 4033  df-iso 4034  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-icc 8764 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator