ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpre-mulgt0 Unicode version

Theorem axpre-mulgt0 6942
Description: The product of two positive reals is positive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulgt0 6982. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axpre-mulgt0  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  <RR  A  /\  0  <RR  B )  ->  0  <RR  ( A  x.  B ) ) )

Proof of Theorem axpre-mulgt0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 6886 . 2  |-  ( A  e.  RR  <->  E. x  e.  R.  <. x ,  0R >.  =  A )
2 elreal 6886 . 2  |-  ( B  e.  RR  <->  E. y  e.  R.  <. y ,  0R >.  =  B )
3 breq2 3765 . . . 4  |-  ( <.
x ,  0R >.  =  A  ->  ( 0 
<RR  <. x ,  0R >.  <->  0  <RR  A ) )
43anbi1d 438 . . 3  |-  ( <.
x ,  0R >.  =  A  ->  ( (
0  <RR  <. x ,  0R >.  /\  0  <RR  <. y ,  0R >. )  <->  ( 0 
<RR  A  /\  0  <RR  <.
y ,  0R >. ) ) )
5 oveq1 5506 . . . 4  |-  ( <.
x ,  0R >.  =  A  ->  ( <. x ,  0R >.  x.  <. y ,  0R >. )  =  ( A  x.  <. y ,  0R >. ) )
65breq2d 3773 . . 3  |-  ( <.
x ,  0R >.  =  A  ->  ( 0 
<RR  ( <. x ,  0R >.  x.  <. y ,  0R >. )  <->  0  <RR  ( A  x.  <. y ,  0R >. ) ) )
74, 6imbi12d 223 . 2  |-  ( <.
x ,  0R >.  =  A  ->  ( (
( 0  <RR  <. x ,  0R >.  /\  0  <RR 
<. y ,  0R >. )  ->  0  <RR  ( <.
x ,  0R >.  x. 
<. y ,  0R >. ) )  <->  ( ( 0 
<RR  A  /\  0  <RR  <.
y ,  0R >. )  ->  0  <RR  ( A  x.  <. y ,  0R >. ) ) ) )
8 breq2 3765 . . . 4  |-  ( <.
y ,  0R >.  =  B  ->  ( 0 
<RR  <. y ,  0R >.  <->  0  <RR  B ) )
98anbi2d 437 . . 3  |-  ( <.
y ,  0R >.  =  B  ->  ( (
0  <RR  A  /\  0  <RR 
<. y ,  0R >. )  <-> 
( 0  <RR  A  /\  0  <RR  B ) ) )
10 oveq2 5507 . . . 4  |-  ( <.
y ,  0R >.  =  B  ->  ( A  x.  <. y ,  0R >. )  =  ( A  x.  B ) )
1110breq2d 3773 . . 3  |-  ( <.
y ,  0R >.  =  B  ->  ( 0 
<RR  ( A  x.  <. y ,  0R >. )  <->  0 
<RR  ( A  x.  B
) ) )
129, 11imbi12d 223 . 2  |-  ( <.
y ,  0R >.  =  B  ->  ( (
( 0  <RR  A  /\  0  <RR  <. y ,  0R >. )  ->  0  <RR  ( A  x.  <. y ,  0R >. ) )  <->  ( (
0  <RR  A  /\  0  <RR  B )  ->  0  <RR  ( A  x.  B
) ) ) )
13 df-0 6877 . . . . . 6  |-  0  =  <. 0R ,  0R >.
1413breq1i 3768 . . . . 5  |-  ( 0 
<RR  <. x ,  0R >.  <->  <. 0R ,  0R >.  <RR  <. x ,  0R >. )
15 ltresr 6896 . . . . 5  |-  ( <. 0R ,  0R >.  <RR  <. x ,  0R >.  <->  0R  <R  x )
1614, 15bitri 173 . . . 4  |-  ( 0 
<RR  <. x ,  0R >.  <-> 
0R  <R  x )
1713breq1i 3768 . . . . 5  |-  ( 0 
<RR  <. y ,  0R >.  <->  <. 0R ,  0R >.  <RR  <. y ,  0R >. )
18 ltresr 6896 . . . . 5  |-  ( <. 0R ,  0R >.  <RR  <. y ,  0R >.  <->  0R  <R  y )
1917, 18bitri 173 . . . 4  |-  ( 0 
<RR  <. y ,  0R >.  <-> 
0R  <R  y )
20 mulgt0sr 6843 . . . 4  |-  ( ( 0R  <R  x  /\  0R  <R  y )  ->  0R  <R  ( x  .R  y ) )
2116, 19, 20syl2anb 275 . . 3  |-  ( ( 0  <RR  <. x ,  0R >.  /\  0  <RR  <. y ,  0R >. )  ->  0R  <R  ( x  .R  y
) )
2213a1i 9 . . . . 5  |-  ( ( x  e.  R.  /\  y  e.  R. )  ->  0  =  <. 0R ,  0R >. )
23 mulresr 6895 . . . . 5  |-  ( ( x  e.  R.  /\  y  e.  R. )  ->  ( <. x ,  0R >.  x.  <. y ,  0R >. )  =  <. (
x  .R  y ) ,  0R >. )
2422, 23breq12d 3774 . . . 4  |-  ( ( x  e.  R.  /\  y  e.  R. )  ->  ( 0  <RR  ( <.
x ,  0R >.  x. 
<. y ,  0R >. )  <->  <. 0R ,  0R >.  <RR  <. ( x  .R  y
) ,  0R >. ) )
25 ltresr 6896 . . . 4  |-  ( <. 0R ,  0R >.  <RR  <. (
x  .R  y ) ,  0R >.  <->  0R  <R  ( x  .R  y ) )
2624, 25syl6bb 185 . . 3  |-  ( ( x  e.  R.  /\  y  e.  R. )  ->  ( 0  <RR  ( <.
x ,  0R >.  x. 
<. y ,  0R >. )  <-> 
0R  <R  ( x  .R  y ) ) )
2721, 26syl5ibr 145 . 2  |-  ( ( x  e.  R.  /\  y  e.  R. )  ->  ( ( 0  <RR  <.
x ,  0R >.  /\  0  <RR  <. y ,  0R >. )  ->  0  <RR  (
<. x ,  0R >.  x. 
<. y ,  0R >. ) ) )
281, 2, 7, 12, 272gencl 2584 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  <RR  A  /\  0  <RR  B )  ->  0  <RR  ( A  x.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    e. wcel 1393   <.cop 3375   class class class wbr 3761  (class class class)co 5499   R.cnr 6376   0Rc0r 6377    .R cmr 6381    <R cltr 6382   RRcr 6869   0cc0 6870    <RR cltrr 6874    x. cmul 6875
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3869  ax-sep 3872  ax-nul 3880  ax-pow 3924  ax-pr 3941  ax-un 4166  ax-setind 4256  ax-iinf 4298
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2308  df-rex 2309  df-reu 2310  df-rab 2312  df-v 2556  df-sbc 2762  df-csb 2850  df-dif 2917  df-un 2919  df-in 2921  df-ss 2928  df-nul 3222  df-pw 3358  df-sn 3378  df-pr 3379  df-op 3381  df-uni 3578  df-int 3613  df-iun 3656  df-br 3762  df-opab 3816  df-mpt 3817  df-tr 3852  df-eprel 4023  df-id 4027  df-po 4030  df-iso 4031  df-iord 4099  df-on 4101  df-suc 4104  df-iom 4301  df-xp 4338  df-rel 4339  df-cnv 4340  df-co 4341  df-dm 4342  df-rn 4343  df-res 4344  df-ima 4345  df-iota 4854  df-fun 4891  df-fn 4892  df-f 4893  df-f1 4894  df-fo 4895  df-f1o 4896  df-fv 4897  df-ov 5502  df-oprab 5503  df-mpt2 5504  df-1st 5754  df-2nd 5755  df-recs 5907  df-irdg 5944  df-1o 5988  df-2o 5989  df-oadd 5992  df-omul 5993  df-er 6093  df-ec 6095  df-qs 6099  df-ni 6383  df-pli 6384  df-mi 6385  df-lti 6386  df-plpq 6423  df-mpq 6424  df-enq 6426  df-nqqs 6427  df-plqqs 6428  df-mqqs 6429  df-1nqqs 6430  df-rq 6431  df-ltnqqs 6432  df-enq0 6503  df-nq0 6504  df-0nq0 6505  df-plq0 6506  df-mq0 6507  df-inp 6545  df-i1p 6546  df-iplp 6547  df-imp 6548  df-iltp 6549  df-enr 6792  df-nr 6793  df-plr 6794  df-mr 6795  df-ltr 6796  df-0r 6797  df-m1r 6799  df-c 6876  df-0 6877  df-r 6880  df-mul 6882  df-lt 6883
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator