![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl2anb | GIF version |
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
Ref | Expression |
---|---|
syl2anb.1 | ⊢ (𝜑 ↔ 𝜓) |
syl2anb.2 | ⊢ (𝜏 ↔ 𝜒) |
syl2anb.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
syl2anb | ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2anb.2 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
2 | syl2anb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | syl2anb.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylanb 268 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | sylan2b 271 | 1 ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ↔ wb 98 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: sylancb 395 reupick3 3222 difprsnss 3502 trin2 4716 imadiflem 4978 fnun 5005 fco 5056 f1co 5101 foco 5116 f1oun 5146 f1oco 5149 eqfunfv 5270 ftpg 5347 issmo 5903 tfrlem5 5930 ener 6259 domtr 6265 unen 6293 xpdom2 6305 axpre-lttrn 6958 axpre-mulgt0 6961 zmulcl 8297 qaddcl 8570 qmulcl 8572 rpaddcl 8606 rpmulcl 8607 rpdivcl 8608 xrltnsym 8714 xrlttri3 8718 ge0addcl 8850 ge0mulcl 8851 serige0 9252 expclzaplem 9279 expge0 9291 expge1 9292 |
Copyright terms: Public domain | W3C validator |