ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  serige0 GIF version

Theorem serige0 9226
Description: A finite sum of nonnegative terms is nonnegative. (Contributed by Jim Kingdon, 22-Aug-2021.)
Hypotheses
Ref Expression
serige0.1 (𝜑𝑁 ∈ (ℤ𝑀))
serige0.2 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℝ)
serige0.3 ((𝜑𝑘 ∈ (ℤ𝑀)) → 0 ≤ (𝐹𝑘))
Assertion
Ref Expression
serige0 (𝜑 → 0 ≤ (seq𝑀( + , 𝐹, ℂ)‘𝑁))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem serige0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 serige0.1 . . . . . 6 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzel2 8476 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
31, 2syl 14 . . . . 5 (𝜑𝑀 ∈ ℤ)
4 cnex 7003 . . . . . 6 ℂ ∈ V
54a1i 9 . . . . 5 (𝜑 → ℂ ∈ V)
6 ssrab2 3025 . . . . . . 7 {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ⊆ ℝ
7 ax-resscn 6974 . . . . . . 7 ℝ ⊆ ℂ
86, 7sstri 2954 . . . . . 6 {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ⊆ ℂ
98a1i 9 . . . . 5 (𝜑 → {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ⊆ ℂ)
10 serige0.2 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℝ)
11 serige0.3 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → 0 ≤ (𝐹𝑘))
12 breq2 3768 . . . . . . 7 (𝑥 = (𝐹𝑘) → (0 ≤ 𝑥 ↔ 0 ≤ (𝐹𝑘)))
1312elrab 2698 . . . . . 6 ((𝐹𝑘) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ↔ ((𝐹𝑘) ∈ ℝ ∧ 0 ≤ (𝐹𝑘)))
1410, 11, 13sylanbrc 394 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥})
15 breq2 3768 . . . . . . . 8 (𝑥 = 𝑘 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑘))
1615elrab 2698 . . . . . . 7 (𝑘 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ↔ (𝑘 ∈ ℝ ∧ 0 ≤ 𝑘))
17 breq2 3768 . . . . . . . 8 (𝑥 = 𝑦 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑦))
1817elrab 2698 . . . . . . 7 (𝑦 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦))
19 readdcl 7005 . . . . . . . . 9 ((𝑘 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑘 + 𝑦) ∈ ℝ)
2019ad2ant2r 478 . . . . . . . 8 (((𝑘 ∈ ℝ ∧ 0 ≤ 𝑘) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → (𝑘 + 𝑦) ∈ ℝ)
21 addge0 7444 . . . . . . . . 9 (((𝑘 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (0 ≤ 𝑘 ∧ 0 ≤ 𝑦)) → 0 ≤ (𝑘 + 𝑦))
2221an4s 522 . . . . . . . 8 (((𝑘 ∈ ℝ ∧ 0 ≤ 𝑘) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → 0 ≤ (𝑘 + 𝑦))
23 breq2 3768 . . . . . . . . 9 (𝑥 = (𝑘 + 𝑦) → (0 ≤ 𝑥 ↔ 0 ≤ (𝑘 + 𝑦)))
2423elrab 2698 . . . . . . . 8 ((𝑘 + 𝑦) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ↔ ((𝑘 + 𝑦) ∈ ℝ ∧ 0 ≤ (𝑘 + 𝑦)))
2520, 22, 24sylanbrc 394 . . . . . . 7 (((𝑘 ∈ ℝ ∧ 0 ≤ 𝑘) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → (𝑘 + 𝑦) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥})
2616, 18, 25syl2anb 275 . . . . . 6 ((𝑘 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ∧ 𝑦 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥}) → (𝑘 + 𝑦) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥})
2726adantl 262 . . . . 5 ((𝜑 ∧ (𝑘 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ∧ 𝑦 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥})) → (𝑘 + 𝑦) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥})
28 addcl 7004 . . . . . 6 ((𝑘 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑘 + 𝑦) ∈ ℂ)
2928adantl 262 . . . . 5 ((𝜑 ∧ (𝑘 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑘 + 𝑦) ∈ ℂ)
303, 5, 9, 14, 27, 29iseqss 9200 . . . 4 (𝜑 → seq𝑀( + , 𝐹, {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥}) = seq𝑀( + , 𝐹, ℂ))
3130fveq1d 5180 . . 3 (𝜑 → (seq𝑀( + , 𝐹, {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥})‘𝑁) = (seq𝑀( + , 𝐹, ℂ)‘𝑁))
32 reex 7013 . . . . . 6 ℝ ∈ V
3332rabex 3901 . . . . 5 {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ∈ V
3433a1i 9 . . . 4 (𝜑 → {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ∈ V)
351, 34, 14, 27iseqcl 9197 . . 3 (𝜑 → (seq𝑀( + , 𝐹, {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥})‘𝑁) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥})
3631, 35eqeltrrd 2115 . 2 (𝜑 → (seq𝑀( + , 𝐹, ℂ)‘𝑁) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥})
37 breq2 3768 . . . 4 (𝑥 = (seq𝑀( + , 𝐹, ℂ)‘𝑁) → (0 ≤ 𝑥 ↔ 0 ≤ (seq𝑀( + , 𝐹, ℂ)‘𝑁)))
3837elrab 2698 . . 3 ((seq𝑀( + , 𝐹, ℂ)‘𝑁) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ↔ ((seq𝑀( + , 𝐹, ℂ)‘𝑁) ∈ ℝ ∧ 0 ≤ (seq𝑀( + , 𝐹, ℂ)‘𝑁)))
3938simprbi 260 . 2 ((seq𝑀( + , 𝐹, ℂ)‘𝑁) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} → 0 ≤ (seq𝑀( + , 𝐹, ℂ)‘𝑁))
4036, 39syl 14 1 (𝜑 → 0 ≤ (seq𝑀( + , 𝐹, ℂ)‘𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wcel 1393  {crab 2310  Vcvv 2557  wss 2917   class class class wbr 3764  cfv 4902  (class class class)co 5512  cc 6885  cr 6886  0cc0 6887   + caddc 6890  cle 7059  cz 8243  cuz 8471  seqcseq 9185
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6973  ax-resscn 6974  ax-1cn 6975  ax-1re 6976  ax-icn 6977  ax-addcl 6978  ax-addrcl 6979  ax-mulcl 6980  ax-addcom 6982  ax-addass 6984  ax-distr 6986  ax-i2m1 6987  ax-0id 6990  ax-rnegex 6991  ax-cnre 6993  ax-pre-ltirr 6994  ax-pre-ltwlin 6995  ax-pre-lttrn 6996  ax-pre-ltadd 6998
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6400  df-pli 6401  df-mi 6402  df-lti 6403  df-plpq 6440  df-mpq 6441  df-enq 6443  df-nqqs 6444  df-plqqs 6445  df-mqqs 6446  df-1nqqs 6447  df-rq 6448  df-ltnqqs 6449  df-enq0 6520  df-nq0 6521  df-0nq0 6522  df-plq0 6523  df-mq0 6524  df-inp 6562  df-i1p 6563  df-iplp 6564  df-iltp 6566  df-enr 6809  df-nr 6810  df-ltr 6813  df-0r 6814  df-1r 6815  df-0 6894  df-1 6895  df-r 6897  df-lt 6900  df-pnf 7060  df-mnf 7061  df-xr 7062  df-ltxr 7063  df-le 7064  df-sub 7182  df-neg 7183  df-inn 7913  df-n0 8180  df-z 8244  df-uz 8472  df-iseq 9186
This theorem is referenced by:  serile  9227
  Copyright terms: Public domain W3C validator