![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ge0addcl | GIF version |
Description: The nonnegative reals are closed under addition. (Contributed by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
ge0addcl | ⊢ ((A ∈ (0[,)+∞) ∧ B ∈ (0[,)+∞)) → (A + B) ∈ (0[,)+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrege0 8615 | . 2 ⊢ (A ∈ (0[,)+∞) ↔ (A ∈ ℝ ∧ 0 ≤ A)) | |
2 | elrege0 8615 | . 2 ⊢ (B ∈ (0[,)+∞) ↔ (B ∈ ℝ ∧ 0 ≤ B)) | |
3 | readdcl 6805 | . . . 4 ⊢ ((A ∈ ℝ ∧ B ∈ ℝ) → (A + B) ∈ ℝ) | |
4 | 3 | ad2ant2r 478 | . . 3 ⊢ (((A ∈ ℝ ∧ 0 ≤ A) ∧ (B ∈ ℝ ∧ 0 ≤ B)) → (A + B) ∈ ℝ) |
5 | addge0 7241 | . . . 4 ⊢ (((A ∈ ℝ ∧ B ∈ ℝ) ∧ (0 ≤ A ∧ 0 ≤ B)) → 0 ≤ (A + B)) | |
6 | 5 | an4s 522 | . . 3 ⊢ (((A ∈ ℝ ∧ 0 ≤ A) ∧ (B ∈ ℝ ∧ 0 ≤ B)) → 0 ≤ (A + B)) |
7 | elrege0 8615 | . . 3 ⊢ ((A + B) ∈ (0[,)+∞) ↔ ((A + B) ∈ ℝ ∧ 0 ≤ (A + B))) | |
8 | 4, 6, 7 | sylanbrc 394 | . 2 ⊢ (((A ∈ ℝ ∧ 0 ≤ A) ∧ (B ∈ ℝ ∧ 0 ≤ B)) → (A + B) ∈ (0[,)+∞)) |
9 | 1, 2, 8 | syl2anb 275 | 1 ⊢ ((A ∈ (0[,)+∞) ∧ B ∈ (0[,)+∞)) → (A + B) ∈ (0[,)+∞)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∈ wcel 1390 class class class wbr 3755 (class class class)co 5455 ℝcr 6710 0cc0 6711 + caddc 6714 +∞cpnf 6854 ≤ cle 6858 [,)cico 8529 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-13 1401 ax-14 1402 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 ax-sep 3866 ax-pow 3918 ax-pr 3935 ax-un 4136 ax-setind 4220 ax-cnex 6774 ax-resscn 6775 ax-1cn 6776 ax-1re 6777 ax-icn 6778 ax-addcl 6779 ax-addrcl 6780 ax-mulcl 6781 ax-addcom 6783 ax-addass 6785 ax-i2m1 6788 ax-0id 6791 ax-rnegex 6792 ax-pre-ltirr 6795 ax-pre-ltwlin 6796 ax-pre-lttrn 6797 ax-pre-ltadd 6799 |
This theorem depends on definitions: df-bi 110 df-3or 885 df-3an 886 df-tru 1245 df-fal 1248 df-nf 1347 df-sb 1643 df-eu 1900 df-mo 1901 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-ne 2203 df-nel 2204 df-ral 2305 df-rex 2306 df-rab 2309 df-v 2553 df-sbc 2759 df-dif 2914 df-un 2916 df-in 2918 df-ss 2925 df-pw 3353 df-sn 3373 df-pr 3374 df-op 3376 df-uni 3572 df-br 3756 df-opab 3810 df-id 4021 df-po 4024 df-iso 4025 df-xp 4294 df-rel 4295 df-cnv 4296 df-co 4297 df-dm 4298 df-iota 4810 df-fun 4847 df-fv 4853 df-ov 5458 df-oprab 5459 df-mpt2 5460 df-pnf 6859 df-mnf 6860 df-xr 6861 df-ltxr 6862 df-le 6863 df-ico 8533 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |