Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  expge1 GIF version

Theorem expge1 9292
 Description: Nonnegative integer exponentiation with a mantissa greater than or equal to 1 is greater than or equal to 1. (Contributed by NM, 21-Feb-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expge1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝐴) → 1 ≤ (𝐴𝑁))

Proof of Theorem expge1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 3768 . . . . . 6 (𝑧 = 𝐴 → (1 ≤ 𝑧 ↔ 1 ≤ 𝐴))
21elrab 2698 . . . . 5 (𝐴 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ (𝐴 ∈ ℝ ∧ 1 ≤ 𝐴))
3 ssrab2 3025 . . . . . . 7 {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ⊆ ℝ
4 ax-resscn 6976 . . . . . . 7 ℝ ⊆ ℂ
53, 4sstri 2954 . . . . . 6 {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ⊆ ℂ
6 breq2 3768 . . . . . . . 8 (𝑧 = 𝑥 → (1 ≤ 𝑧 ↔ 1 ≤ 𝑥))
76elrab 2698 . . . . . . 7 (𝑥 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥))
8 breq2 3768 . . . . . . . 8 (𝑧 = 𝑦 → (1 ≤ 𝑧 ↔ 1 ≤ 𝑦))
98elrab 2698 . . . . . . 7 (𝑦 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦))
10 remulcl 7009 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
1110ad2ant2r 478 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (𝑥 · 𝑦) ∈ ℝ)
12 1t1e1 8067 . . . . . . . . . 10 (1 · 1) = 1
13 1re 7026 . . . . . . . . . . . . . 14 1 ∈ ℝ
14 0le1 7476 . . . . . . . . . . . . . 14 0 ≤ 1
1513, 14pm3.2i 257 . . . . . . . . . . . . 13 (1 ∈ ℝ ∧ 0 ≤ 1)
1615jctl 297 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝑥 ∈ ℝ))
1715jctl 297 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝑦 ∈ ℝ))
18 lemul12a 7828 . . . . . . . . . . . 12 ((((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝑥 ∈ ℝ) ∧ ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝑦 ∈ ℝ)) → ((1 ≤ 𝑥 ∧ 1 ≤ 𝑦) → (1 · 1) ≤ (𝑥 · 𝑦)))
1916, 17, 18syl2an 273 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 ≤ 𝑥 ∧ 1 ≤ 𝑦) → (1 · 1) ≤ (𝑥 · 𝑦)))
2019imp 115 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (1 ≤ 𝑥 ∧ 1 ≤ 𝑦)) → (1 · 1) ≤ (𝑥 · 𝑦))
2112, 20syl5eqbrr 3798 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (1 ≤ 𝑥 ∧ 1 ≤ 𝑦)) → 1 ≤ (𝑥 · 𝑦))
2221an4s 522 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 1 ≤ (𝑥 · 𝑦))
23 breq2 3768 . . . . . . . . 9 (𝑧 = (𝑥 · 𝑦) → (1 ≤ 𝑧 ↔ 1 ≤ (𝑥 · 𝑦)))
2423elrab 2698 . . . . . . . 8 ((𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ ((𝑥 · 𝑦) ∈ ℝ ∧ 1 ≤ (𝑥 · 𝑦)))
2511, 22, 24sylanbrc 394 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧})
267, 9, 25syl2anb 275 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧}) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧})
27 1le1 7563 . . . . . . 7 1 ≤ 1
28 breq2 3768 . . . . . . . 8 (𝑧 = 1 → (1 ≤ 𝑧 ↔ 1 ≤ 1))
2928elrab 2698 . . . . . . 7 (1 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ (1 ∈ ℝ ∧ 1 ≤ 1))
3013, 27, 29mpbir2an 849 . . . . . 6 1 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧}
315, 26, 30expcllem 9266 . . . . 5 ((𝐴 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧})
322, 31sylanbr 269 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧})
33323impa 1099 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧})
34333com23 1110 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝐴) → (𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧})
35 breq2 3768 . . . 4 (𝑧 = (𝐴𝑁) → (1 ≤ 𝑧 ↔ 1 ≤ (𝐴𝑁)))
3635elrab 2698 . . 3 ((𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ ((𝐴𝑁) ∈ ℝ ∧ 1 ≤ (𝐴𝑁)))
3736simprbi 260 . 2 ((𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} → 1 ≤ (𝐴𝑁))
3834, 37syl 14 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝐴) → 1 ≤ (𝐴𝑁))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ∧ w3a 885   ∈ wcel 1393  {crab 2310   class class class wbr 3764  (class class class)co 5512  ℂcc 6887  ℝcr 6888  0cc0 6889  1c1 6890   · cmul 6894   ≤ cle 7061  ℕ0cn0 8181  ↑cexp 9254 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002 This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-if 3332  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652  df-inn 7915  df-n0 8182  df-z 8246  df-uz 8474  df-iseq 9212  df-iexp 9255 This theorem is referenced by:  expgt1  9293  leexp2a  9307  expge1d  9400
 Copyright terms: Public domain W3C validator