ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trin2 GIF version

Theorem trin2 4716
Description: The intersection of two transitive classes is transitive. (Contributed by FL, 31-Jul-2009.)
Assertion
Ref Expression
trin2 (((𝑅𝑅) ⊆ 𝑅 ∧ (𝑆𝑆) ⊆ 𝑆) → ((𝑅𝑆) ∘ (𝑅𝑆)) ⊆ (𝑅𝑆))

Proof of Theorem trin2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cotr 4706 . . . 4 ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
2 cotr 4706 . . . . . 6 ((𝑆𝑆) ⊆ 𝑆 ↔ ∀𝑥𝑦𝑧((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧))
3 brin 3811 . . . . . . . . . . . . 13 (𝑥(𝑅𝑆)𝑦 ↔ (𝑥𝑅𝑦𝑥𝑆𝑦))
4 brin 3811 . . . . . . . . . . . . 13 (𝑦(𝑅𝑆)𝑧 ↔ (𝑦𝑅𝑧𝑦𝑆𝑧))
5 simpr 103 . . . . . . . . . . . . . . . 16 ((((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
6 simpl 102 . . . . . . . . . . . . . . . 16 ((((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) → ((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧))
75, 6anim12d 318 . . . . . . . . . . . . . . 15 ((((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) → (((𝑥𝑅𝑦𝑦𝑅𝑧) ∧ (𝑥𝑆𝑦𝑦𝑆𝑧)) → (𝑥𝑅𝑧𝑥𝑆𝑧)))
87com12 27 . . . . . . . . . . . . . 14 (((𝑥𝑅𝑦𝑦𝑅𝑧) ∧ (𝑥𝑆𝑦𝑦𝑆𝑧)) → ((((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) → (𝑥𝑅𝑧𝑥𝑆𝑧)))
98an4s 522 . . . . . . . . . . . . 13 (((𝑥𝑅𝑦𝑥𝑆𝑦) ∧ (𝑦𝑅𝑧𝑦𝑆𝑧)) → ((((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) → (𝑥𝑅𝑧𝑥𝑆𝑧)))
103, 4, 9syl2anb 275 . . . . . . . . . . . 12 ((𝑥(𝑅𝑆)𝑦𝑦(𝑅𝑆)𝑧) → ((((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) → (𝑥𝑅𝑧𝑥𝑆𝑧)))
1110com12 27 . . . . . . . . . . 11 ((((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) → ((𝑥(𝑅𝑆)𝑦𝑦(𝑅𝑆)𝑧) → (𝑥𝑅𝑧𝑥𝑆𝑧)))
12 brin 3811 . . . . . . . . . . 11 (𝑥(𝑅𝑆)𝑧 ↔ (𝑥𝑅𝑧𝑥𝑆𝑧))
1311, 12syl6ibr 151 . . . . . . . . . 10 ((((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) → ((𝑥(𝑅𝑆)𝑦𝑦(𝑅𝑆)𝑧) → 𝑥(𝑅𝑆)𝑧))
1413alanimi 1348 . . . . . . . . 9 ((∀𝑧((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧) ∧ ∀𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) → ∀𝑧((𝑥(𝑅𝑆)𝑦𝑦(𝑅𝑆)𝑧) → 𝑥(𝑅𝑆)𝑧))
1514alanimi 1348 . . . . . . . 8 ((∀𝑦𝑧((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧) ∧ ∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) → ∀𝑦𝑧((𝑥(𝑅𝑆)𝑦𝑦(𝑅𝑆)𝑧) → 𝑥(𝑅𝑆)𝑧))
1615alanimi 1348 . . . . . . 7 ((∀𝑥𝑦𝑧((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧) ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) → ∀𝑥𝑦𝑧((𝑥(𝑅𝑆)𝑦𝑦(𝑅𝑆)𝑧) → 𝑥(𝑅𝑆)𝑧))
1716ex 108 . . . . . 6 (∀𝑥𝑦𝑧((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧) → (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) → ∀𝑥𝑦𝑧((𝑥(𝑅𝑆)𝑦𝑦(𝑅𝑆)𝑧) → 𝑥(𝑅𝑆)𝑧)))
182, 17sylbi 114 . . . . 5 ((𝑆𝑆) ⊆ 𝑆 → (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) → ∀𝑥𝑦𝑧((𝑥(𝑅𝑆)𝑦𝑦(𝑅𝑆)𝑧) → 𝑥(𝑅𝑆)𝑧)))
1918com12 27 . . . 4 (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) → ((𝑆𝑆) ⊆ 𝑆 → ∀𝑥𝑦𝑧((𝑥(𝑅𝑆)𝑦𝑦(𝑅𝑆)𝑧) → 𝑥(𝑅𝑆)𝑧)))
201, 19sylbi 114 . . 3 ((𝑅𝑅) ⊆ 𝑅 → ((𝑆𝑆) ⊆ 𝑆 → ∀𝑥𝑦𝑧((𝑥(𝑅𝑆)𝑦𝑦(𝑅𝑆)𝑧) → 𝑥(𝑅𝑆)𝑧)))
2120imp 115 . 2 (((𝑅𝑅) ⊆ 𝑅 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑥𝑦𝑧((𝑥(𝑅𝑆)𝑦𝑦(𝑅𝑆)𝑧) → 𝑥(𝑅𝑆)𝑧))
22 cotr 4706 . 2 (((𝑅𝑆) ∘ (𝑅𝑆)) ⊆ (𝑅𝑆) ↔ ∀𝑥𝑦𝑧((𝑥(𝑅𝑆)𝑦𝑦(𝑅𝑆)𝑧) → 𝑥(𝑅𝑆)𝑧))
2321, 22sylibr 137 1 (((𝑅𝑅) ⊆ 𝑅 ∧ (𝑆𝑆) ⊆ 𝑆) → ((𝑅𝑆) ∘ (𝑅𝑆)) ⊆ (𝑅𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wal 1241  cin 2916  wss 2917   class class class wbr 3764  ccom 4349
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351  df-rel 4352  df-co 4354
This theorem is referenced by:  trinxp  4718
  Copyright terms: Public domain W3C validator