![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nlt1pig | GIF version |
Description: No positive integer is less than one. (Contributed by Jim Kingdon, 31-Aug-2019.) |
Ref | Expression |
---|---|
nlt1pig | ⊢ (𝐴 ∈ N → ¬ 𝐴 <N 1𝑜) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elni 6406 | . . 3 ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) | |
2 | 1 | simprbi 260 | . 2 ⊢ (𝐴 ∈ N → 𝐴 ≠ ∅) |
3 | noel 3228 | . . . . 5 ⊢ ¬ 𝐴 ∈ ∅ | |
4 | 1pi 6413 | . . . . . . . . 9 ⊢ 1𝑜 ∈ N | |
5 | ltpiord 6417 | . . . . . . . . 9 ⊢ ((𝐴 ∈ N ∧ 1𝑜 ∈ N) → (𝐴 <N 1𝑜 ↔ 𝐴 ∈ 1𝑜)) | |
6 | 4, 5 | mpan2 401 | . . . . . . . 8 ⊢ (𝐴 ∈ N → (𝐴 <N 1𝑜 ↔ 𝐴 ∈ 1𝑜)) |
7 | df-1o 6001 | . . . . . . . . . 10 ⊢ 1𝑜 = suc ∅ | |
8 | 7 | eleq2i 2104 | . . . . . . . . 9 ⊢ (𝐴 ∈ 1𝑜 ↔ 𝐴 ∈ suc ∅) |
9 | elsucg 4141 | . . . . . . . . 9 ⊢ (𝐴 ∈ N → (𝐴 ∈ suc ∅ ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅))) | |
10 | 8, 9 | syl5bb 181 | . . . . . . . 8 ⊢ (𝐴 ∈ N → (𝐴 ∈ 1𝑜 ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅))) |
11 | 6, 10 | bitrd 177 | . . . . . . 7 ⊢ (𝐴 ∈ N → (𝐴 <N 1𝑜 ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅))) |
12 | 11 | biimpa 280 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐴 <N 1𝑜) → (𝐴 ∈ ∅ ∨ 𝐴 = ∅)) |
13 | 12 | ord 643 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐴 <N 1𝑜) → (¬ 𝐴 ∈ ∅ → 𝐴 = ∅)) |
14 | 3, 13 | mpi 15 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐴 <N 1𝑜) → 𝐴 = ∅) |
15 | 14 | ex 108 | . . 3 ⊢ (𝐴 ∈ N → (𝐴 <N 1𝑜 → 𝐴 = ∅)) |
16 | 15 | necon3ad 2247 | . 2 ⊢ (𝐴 ∈ N → (𝐴 ≠ ∅ → ¬ 𝐴 <N 1𝑜)) |
17 | 2, 16 | mpd 13 | 1 ⊢ (𝐴 ∈ N → ¬ 𝐴 <N 1𝑜) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 97 ↔ wb 98 ∨ wo 629 = wceq 1243 ∈ wcel 1393 ≠ wne 2204 ∅c0 3224 class class class wbr 3764 suc csuc 4102 ωcom 4313 1𝑜c1o 5994 Ncnpi 6370 <N clti 6373 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-nul 3883 ax-pow 3927 ax-pr 3944 ax-un 4170 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-rex 2312 df-v 2559 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-int 3616 df-br 3765 df-opab 3819 df-eprel 4026 df-suc 4108 df-iom 4314 df-xp 4351 df-1o 6001 df-ni 6402 df-lti 6405 |
This theorem is referenced by: caucvgsr 6886 |
Copyright terms: Public domain | W3C validator |