ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elni GIF version

Theorem elni 6406
Description: Membership in the class of positive integers. (Contributed by NM, 15-Aug-1995.)
Assertion
Ref Expression
elni (𝐴N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))

Proof of Theorem elni
StepHypRef Expression
1 df-ni 6402 . . 3 N = (ω ∖ {∅})
21eleq2i 2104 . 2 (𝐴N𝐴 ∈ (ω ∖ {∅}))
3 eldifsn 3495 . 2 (𝐴 ∈ (ω ∖ {∅}) ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
42, 3bitri 173 1 (𝐴N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
Colors of variables: wff set class
Syntax hints:  wa 97  wb 98  wcel 1393  wne 2204  cdif 2914  c0 3224  {csn 3375  ωcom 4313  Ncnpi 6370
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-v 2559  df-dif 2920  df-sn 3381  df-ni 6402
This theorem is referenced by:  0npi  6411  elni2  6412  1pi  6413  addclpi  6425  mulclpi  6426  nlt1pig  6439  indpi  6440  nqnq0pi  6536  prarloclemcalc  6600
  Copyright terms: Public domain W3C validator